HOME

TheInfoList



OR:

Foliation in geology refers to repetitive layering in
metamorphic rocks Metamorphic rocks arise from the transformation of existing rock to new types of rock in a process called metamorphism. The original rock (protolith) is subjected to temperatures greater than and, often, elevated pressure of or more, caus ...
.Marshak, Stephen, ''Essentials of Geology,'' W. W. Norton 3rd Ed, 2009 Each layer can be as thin as a sheet of paper, or over a meter in thickness. The word comes from the Latin ''folium'', meaning "leaf", and refers to the sheet-like planar structure. It is caused by shearing forces (pressures pushing different sections of the rock in different directions), or
differential pressure Pressure measurement is the measurement of an applied force by a fluid (liquid or gas) on a surface. Pressure is typically measured in units of force per unit of surface area. Many techniques have been developed for the measurement of pressur ...
(higher pressure from one direction than in others). The layers form parallel to the direction of the shear, or perpendicular to the direction of higher pressure. Nonfoliated
metamorphic rock Metamorphic rocks arise from the transformation of existing rock to new types of rock in a process called metamorphism. The original rock (protolith) is subjected to temperatures greater than and, often, elevated pressure of or more, caus ...
s are typically formed in the absence of significant differential pressure or shear. Foliation is common in rocks affected by the regional
metamorphic Metamorphic rocks arise from the transformation of existing rock to new types of rock in a process called metamorphism. The original rock (protolith) is subjected to temperatures greater than and, often, elevated pressure of or more, causi ...
compression typical of areas of mountain belt formation (
orogenic belts Orogeny is a mountain building process. An orogeny is an event that takes place at a convergent plate margin when plate motion compresses the margin. An ''orogenic belt'' or ''orogen'' develops as the compressed plate crumples and is uplifted t ...
). More technically, foliation is any penetrative planar
fabric Textile is an umbrella term that includes various fiber-based materials, including fibers, yarns, filaments, threads, different fabric types, etc. At first, the word "textiles" only referred to woven fabrics. However, weaving is not ...
present in metamorphic rocks. Rocks exhibiting foliation include the standard sequence formed by the prograde metamorphism of
mudrock Mudrocks are a class of fine-grained siliciclastic sedimentary rocks. The varying types of mudrocks include siltstone, claystone, mudstone, slate, and shale. Most of the particles of which the stone is composed are less than and are too ...
s;
slate Slate is a fine-grained, foliated, homogeneous metamorphic rock derived from an original shale-type sedimentary rock composed of clay or volcanic ash through low-grade regional metamorphism. It is the finest grained foliated metamorphic rock. ...
,
phyllite Phyllite ( ) is a type of foliated metamorphic rock created from slate that is further metamorphosed so that very fine grained white mica achieves a preferred orientation.Stephen Marshak ''Essentials of Geology'', 3rd ed. It is primarily compo ...
,
schist Schist ( ) is a medium-grained metamorphic rock showing pronounced schistosity. This means that the rock is composed of mineral grains easily seen with a low-power hand lens, oriented in such a way that the rock is easily split into thin flakes ...
and
gneiss Gneiss ( ) is a common and widely distributed type of metamorphic rock. It is formed by high-temperature and high-pressure metamorphic processes acting on formations composed of igneous or sedimentary rocks. Gneiss forms at higher temperatures a ...
. The ''slatey cleavage'' typical of slate is due to the preferred orientation of microscopic
phyllosilicate Silicate minerals are rock-forming minerals made up of silicate groups. They are the largest and most important class of minerals and make up approximately 90 percent of Earth's crust. In mineralogy, silica (silicon dioxide, ) is usually consid ...
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macro ...
s. In gneiss, the foliation is more typically represented by compositional banding due to segregation of mineral phases. Foliated rock is also known as S-tectonite in sheared rock masses. Examples include the bands in
gneiss Gneiss ( ) is a common and widely distributed type of metamorphic rock. It is formed by high-temperature and high-pressure metamorphic processes acting on formations composed of igneous or sedimentary rocks. Gneiss forms at higher temperatures a ...
(gneissic banding), a preferred orientation of planar ''large'' mica flakes in
schist Schist ( ) is a medium-grained metamorphic rock showing pronounced schistosity. This means that the rock is composed of mineral grains easily seen with a low-power hand lens, oriented in such a way that the rock is easily split into thin flakes ...
(schistosity), the preferred orientation of ''small'' mica flakes in
phyllite Phyllite ( ) is a type of foliated metamorphic rock created from slate that is further metamorphosed so that very fine grained white mica achieves a preferred orientation.Stephen Marshak ''Essentials of Geology'', 3rd ed. It is primarily compo ...
(with its planes having a silky sheen, called ''phylitic luster'' – the Greek word, ''phyllon'', also means "leaf"), the extremely fine grained preferred orientation of clay flakes in
slate Slate is a fine-grained, foliated, homogeneous metamorphic rock derived from an original shale-type sedimentary rock composed of clay or volcanic ash through low-grade regional metamorphism. It is the finest grained foliated metamorphic rock. ...
(called " slaty cleavage"), and the layers of flattened, smeared, pancake-like clasts in
metaconglomerate Metaconglomerate is a rock type which originated from conglomerate after undergoing metamorphism. Conglomerate is easily identifiable by the pebbles or larger clasts in a matrix of sand, silt, or clay. Metaconglomerate looks similar to conglom ...
.


Formation mechanisms

Foliation is usually formed by the preferred orientation of
mineral In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid chemical compound with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed. (2 ...
s within a rock. Usually, this is the result of some physical force and its effect on the growth of minerals. The planar fabric of a foliation typically forms at
right angle In geometry and trigonometry, a right angle is an angle of exactly 90 degrees or radians corresponding to a quarter turn. If a ray is placed so that its endpoint is on a line and the adjacent angles are equal, then they are right angles. Th ...
s to the maximum principal stress direction. In sheared zones, however, planar fabric within a rock may not be directly perpendicular to the principal stress direction due to rotation, mass transport, and shortening. Foliation may be formed by realignment of
mica Micas ( ) are a group of silicate minerals whose outstanding physical characteristic is that individual mica crystals can easily be split into extremely thin elastic plates. This characteristic is described as perfect basal cleavage. Mica is ...
s and
clay Clay is a type of fine-grained natural soil material containing clay minerals (hydrous aluminium phyllosilicates, e.g. kaolin, Al2 Si2 O5( OH)4). Clays develop plasticity when wet, due to a molecular film of water surrounding the clay pa ...
s via physical rotation of the minerals within the rock. Often this foliation is associated with diagenetic metamorphism and low-grade burial metamorphism. Foliation may parallel original sedimentary bedding, but more often is oriented at some angle to it. The growth of platy minerals, typically of the mica group, is usually a result of prograde metamorphic reactions during deformation. Often,
retrograde metamorphism Metamorphism is the transformation of existing rock (the protolith) to rock with a different mineral composition or texture. Metamorphism takes place at temperatures in excess of , and often also at elevated pressure or in the presence of che ...
will not form a foliation because the unroofing of a metamorphic belt is not accompanied by significant compressive stress. Thermal metamorphism in the aureole of a
granite Granite () is a coarse-grained ( phaneritic) intrusive igneous rock composed mostly of quartz, alkali feldspar, and plagioclase. It forms from magma with a high content of silica and alkali metal oxides that slowly cools and solidifies un ...
is also unlikely to result in the growth of mica in a foliation, although the growth of new minerals may overprint existing foliation(s). Alignment of tabular minerals in
metamorphic rock Metamorphic rocks arise from the transformation of existing rock to new types of rock in a process called metamorphism. The original rock (protolith) is subjected to temperatures greater than and, often, elevated pressure of or more, caus ...
s,
igneous rock Igneous rock (derived from the Latin word ''ignis'' meaning fire), or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rock is formed through the cooling and solidification of magma o ...
s and
intrusive rock Intrusive rock is formed when magma penetrates existing rock, crystallizes, and solidifies underground to form '' intrusions'', such as batholiths, dikes, sills, laccoliths, and volcanic necks.Intrusive RocksIntrusive rocks accessdate: March ...
s may form a foliation. Typical examples of metamorphic rocks include porphyroblastic schists where large, oblate minerals form an alignment either due to growth or rotation in the groundmass. Igneous rocks can become foliated by alignment of cumulate crystals during
convection Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoyancy). When the cause of the c ...
in large
magma chamber A magma chamber is a large pool of liquid rock beneath the surface of the Earth. The molten rock, or magma, in such a chamber is less dense than the surrounding country rock, which produces buoyant forces on the magma that tend to drive it up ...
s, especially
ultramafic Ultramafic rocks (also referred to as ultrabasic rocks, although the terms are not wholly equivalent) are igneous and meta-igneous rocks with a very low silica content (less than 45%), generally >18% MgO, high FeO, low potassium, and are composed ...
intrusions, and typically
plagioclase Plagioclase is a series of tectosilicate (framework silicate) minerals within the feldspar group. Rather than referring to a particular mineral with a specific chemical composition, plagioclase is a continuous solid solution series, more p ...
lath A lath or slat is a thin, narrow strip of straight-wood grain, grained wood used under roof shingles or tiles, on lath and plaster walls and ceilings to hold plaster, and in Latticework, lattice and Trellis (architecture), trellis work. ''Lath ...
s. Granite may form foliation due to frictional drag on
viscous The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the in ...
magma by the wall rocks. Lavas may preserve a flow foliation, or even compressed eutaxitic texture, typically in highly viscous
felsic In geology, felsic is a modifier describing igneous rocks that are relatively rich in elements that form feldspar and quartz.Marshak, Stephen, 2009, ''Essentials of Geology,'' W. W. Norton & Company, 3rd ed. It is contrasted with mafic rocks, wh ...
agglomerate Agglomerate (from the Latin ''agglomerare'' meaning "to form into a ball") is a coarse accumulation of large blocks of volcanic material that contains at least 75% bombs. Volcanic bombs differ from volcanic blocks in that their shape records flu ...
,
welded tuff Tuff is a type of rock made of volcanic ash ejected from a vent during a volcanic eruption. Following ejection and deposition, the ash is lithified into a solid rock. Rock that contains greater than 75% ash is considered tuff, while rock cont ...
and
pyroclastic Pyroclastic rocks (derived from the el, πῦρ, links=no, meaning fire; and , meaning broken) are clastic rocks composed of rock fragments produced and ejected by explosive volcanic eruptions. The individual rock fragments are known as pyroc ...
surge deposits. Metamorphic differentiation, typical of
gneiss Gneiss ( ) is a common and widely distributed type of metamorphic rock. It is formed by high-temperature and high-pressure metamorphic processes acting on formations composed of igneous or sedimentary rocks. Gneiss forms at higher temperatures a ...
es, is caused by chemical and compositional banding within the metamorphic rock mass. Usually, this represents the
protolith A protolith () is the original, unmetamorphosed rock from which a given metamorphic rock is formed. For example, the protolith of a slate is a shale or mudstone. Metamorphic rocks can be derived from any other kind of non-metamorphic rock an ...
chemistry, which forms distinct mineral assemblages. However, compositional banding can be the result of
nucleation In thermodynamics, nucleation is the first step in the formation of either a new thermodynamic phase or structure via self-assembly or self-organization within a substance or mixture. Nucleation is typically defined to be the process that deter ...
processes which cause chemical and mineralogical differentiation into bands. This typically follows the same principle as mica growth, perpendicular to the principal stress. Metamorphic differentiation can be present at angles to protolith compositional banding. '' Crenulation cleavage'' and '' oblique foliation'' are particular types of foliation.


Interpretation

Foliation, as it forms generally perpendicular to the direction of principal stress, records the direction of shortening. This is related to the axis of folds, which generally form an ''axial-planar'' foliation within their axial regions. Measurement of the intersection between a fold's axial plane and a surface on the fold will provide the fold plunge. If a foliation does not match the observed plunge of a fold, it is likely associated with a different deformation event. Foliation in areas of shearing, and within the plane of
thrust fault A thrust fault is a break in the Earth's crust, across which older rocks are pushed above younger rocks. Thrust geometry and nomenclature Reverse faults A thrust fault is a type of reverse fault that has a dip of 45 degrees or less. If ...
s, can provide information on the transport direction or sense of movement on the thrust or shear. Generally, the acute intersection angle shows the direction of transport. Foliations typically bend or curve into a shear, which provides the same information, if it is of a scale which can be observed. Foliations, in a regional sense, will tend to curve around rigid, incompressible bodies such as granite. Thus, they are not always 'planar' in the strictest sense and may violate the rule of being perpendicular to the regional stress field, due to local influences. This is a megascopic version of what may occur around porphyroblasts. Often, fine observation of foliations on outcrop, hand specimen and on the microscopic scale complements observations on a map or regional scale.


Description

When describing a foliation it is useful to note * the mineralogy of the folia; this can provide information on the conditions of formation * the mineralogy in intrafolial areas * foliation spacing * any porphyroblasts or minerals associated with the foliation and whether they overprint it or are cut by it * whether it is planar, undulose, vague or well developed * its orientation in space, as strike and dip, or dip and dip direction * its relationship to other foliations, to bedding and any folding * measure intersection lineations Following such a methodology allows eventual correlations in style, metamorphic grade, and intensity throughout a region, relationship to faults,
shears Shears may refer to: Cutting devices * Scissors, also called shears * Hair-cutting shears * Blade shears, typically used for shearing animals * Grass shears, for lawn trimming * Kitchen shears, scissors used in the kitchen for food preparation * ...
, structures and mineral assemblages.


Engineering considerations

In
geotechnical engineering Geotechnical engineering is the branch of civil engineering concerned with the engineering behavior of earth materials. It uses the principles of soil mechanics and rock mechanics for the solution of its respective engineering problems. It ...
a foliation plane may form a discontinuity that may have a large influence on the mechanical behavior (strength, deformation, etc.) of rock masses in, for example,
tunnel A tunnel is an underground passageway, dug through surrounding soil, earth or rock, and enclosed except for the entrance and exit, commonly at each end. A pipeline is not a tunnel, though some recent tunnels have used immersed tube cons ...
, foundation, or
slope In mathematics, the slope or gradient of a line is a number that describes both the ''direction'' and the ''steepness'' of the line. Slope is often denoted by the letter ''m''; there is no clear answer to the question why the letter ''m'' is use ...
construction.


See also

* Cleavage (geology) * Discontinuity (geotechnical engineering) *
Exfoliating granite Exfoliating granite is a granite undergoing exfoliation, or onion skin weathering (desquamation). The external delaminated layers of granite are gradually produced by the cyclic variations of temperature at the surface of the rock in a process ...
* Fissility (geology) *
Fold (geology) In structural geology, a fold is a stack of originally planar surfaces, such as sedimentary strata, that are bent or curved during permanent deformation. Folds in rocks vary in size from microscopic crinkles to mountain-sized folds. They occur ...
*
List of rock textures This page is intended to be a list of rock textural and morphological terms. A * Adcumulate * Agglomeritic * Adamantine a type of lustre * Amygdaloidal * Anhedral * Antitaxial veins * Aphanitic * Aplitic; aplite * Augen textured gn ...
*
List of rock types The following is a list of rock types recognized by geologists. There is no agreed number of specific types of rocks. Any unique combination of chemical composition, mineralogy, grain size, texture, or other distinguishing characteristics can des ...
*
Rock microstructure Rock microstructure includes the texture and small-scale structures of a rock. The words ''texture'' and ''microstructure'' are interchangeable, with the latter preferred in modern geological literature. However, ''texture'' is still acceptable ...
*
Shear (geology) Boudinaged quartz vein (with strain fringe) showing ''Fault (geology)">sinistral shear sense'', Starlight Pit, Fortnum Gold Mine, Western Australia In geology, shear is the response of a rock to deformation usually by compressive stress and ...


References

* Blatt, Harvey and Tracy, Robert J.; 1996, ''Petrology: Igneous, Sedimentary, and Metamorphic'', 2nd ed., p. 359-360, W. H. Freeman, * Vernon, Ron H., 2004, ''A Practical Guide to Rock Microstructure'', Oxford University Press, Oxford. Metamorphic petrology Metamorphic rocks Petrology concepts Structural geology {{Metamorphic petrology