HOME

TheInfoList



OR:

Fluid theories of electricity are outdated theories that postulated one or more
electrical Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described ...
fluid In physics, a fluid is a liquid, gas, or other material that continuously deforms (''flows'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are substances which cannot resist any shear ...
s which were thought to be responsible for many electrical phenomena in the
history of electromagnetism The history of electromagnetic theory begins with ancient measures to understand atmospheric electricity, in particular lightning. People then had little understanding of electricity, and were unable to explain the phenomena. Scientific understan ...
. The "two-fluid" theory of electricity, created by Charles François de Cisternay du Fay, postulated that electricity was the interaction between two electrical 'fluids.' An alternate simpler theory was proposed by
Benjamin Franklin Benjamin Franklin ( April 17, 1790) was an American polymath who was active as a writer, scientist, inventor, statesman, diplomat, printer, publisher, and political philosopher. Encyclopædia Britannica, Wood, 2021 Among the leading int ...
, called the unitary, or one-fluid, theory of electricity. This theory claimed that electricity was really one fluid, which could be present in excess, or absent from a body, thus explaining its electrical charge. Franklin's theory explained how charges could be dispelled (such as those in
Leyden jar A Leyden jar (or Leiden jar, or archaically, sometimes Kleistian jar) is an electrical component that stores a high-voltage electric charge (from an external source) between electrical conductors on the inside and outside of a glass jar. It ty ...
s) and how they could be passed through a chain of people. The fluid theories of electricity eventually became updated to include the effects of
magnetism Magnetism is the class of physical attributes that are mediated by a magnetic field, which refers to the capacity to induce attractive and repulsive phenomena in other entities. Electric currents and the magnetic moments of elementary particles ...
, and
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
s (upon their discovery).


Fluid theories

In the 1700s many physical phenomena were thought of in terms of an aether, which was a fluid that could permeate matter. This idea had been used for centuries, and was the basis of thinking about physical phenomena, such as electricity, as liquids. Other 18th century examples of fluid models are Lavoisier's caloric and the magnetic fluids of Coulomb and Aepinus.


Two-fluid theory

By the 18th century, one of a few theories explaining observed electrical phenomena was the two-fluid theory. This theory is generally attributed to Charles François de Cisternay du Fay. du Fay's theory suggested that electricity was composed of two liquids, which could flow through solid bodies. One liquid carried a positive charge, and the other a negative charge. When these two liquids came into contact with one another, they would produce a neutral charge.Fowler, M. (1997). Historical Beginnings of Theories of Electricity and Magnetism. from http://galileoandeinstein.physics.virginia.edu/more_stuff/E&M_Hist.html This theory dealt mainly with explaining electrical attraction and repulsion, rather than how an object could be charged or discharged. du Fay observed this while repeating an experiment created by
Otto von Guericke Otto von Guericke ( , , ; spelled Gericke until 1666; November 20, 1602 – May 11, 1686 ; November 30, 1602 – May 21, 1686 ) was a German scientist, inventor, and politician. His pioneering scientific work, the development of experimental me ...
, wherein a thin material, such as a feather or leaf, would repel a charged object after making contact with it. du Fay observed that the “leaf-gold is first attracted by the tube; and acquires an electricity be approaching it; and of consequence is immediately repell’d by it.” This seemed to confirm for du Fay that the leaf was being pushed as a ‘current’ of electricity flowed around and through it. Through further testing, du Fay determined that an object could hold one of two types of electricity, either vitreous or resinous electricity. He found that an object with vitreous electricity would repel another vitreous object, but would be attracted to an object with resinous electricityTricker, R. A. R. (1965). Early electrodynamics: The first law of circulation. Oxford: Pergamon Press. Another supporter of the two-fluid theory was
Christian Gottlieb Kratzenstein Christian Gottlieb Kratzenstein (30 January 1723, Wernigerode – 6 July 1795, Copenhagen) was a German-born doctor, physicist and engineer. From 1753 to the end of his life he was a professor at the University of Copenhagen where he served as ...
. He speculated also the electric charges were carried by vortices in these two fluids.E. Snorrason, ''C.G. Kratzenstein, professor physices experimentalis Petropol. et Havn. and his studies on electricity during the eighteenth century'', Odense University Press (1974). .


One-fluid theory

In 1746
William Watson William, Willie, Bill or Billy Watson may refer to: Entertainment * William Watson (songwriter) (1794–1840), English concert hall singer and songwriter * William Watson (poet) (1858–1935), English poet * Billy Watson (actor) (1923–2022), A ...
proposed a one-fluid theory. On 11 July 1747 Benjamin Franklin composed a letter in which he outlined his new theory. This is the first record of his theory.Home, R. (1972). Franklin's Electrical Atmospheres. The British Journal for the History of Science, 6 (2), 131-151. Franklin developed this theory mainly concentrating on the charging and discharging of bodies, as opposed to du Fay, who concentrated mainly on electrical attraction and repulsion. Franklin's theory stated that electricity should be thought of as the movement of a single liquid, as opposed to the interaction between two liquids. A body would show signs of electricity when it held either too much, or too little of this liquid. A neutral object was therefore thought to contain a “normal” amount of this fluid. Franklin also outlined two possible states of electrification, positive and negative. He argued that a positively charged object would contain too much fluid, while a negatively charged object would contain too little fluid. Franklin was able to apply this thinking by explaining unexplained phenomena of the time, such as the
Leyden jar A Leyden jar (or Leiden jar, or archaically, sometimes Kleistian jar) is an electrical component that stores a high-voltage electric charge (from an external source) between electrical conductors on the inside and outside of a glass jar. It ty ...
, a basic charge storing device similar to a
capacitor A capacitor is a device that stores electrical energy in an electric field by virtue of accumulating electric charges on two close surfaces insulated from each other. It is a passive electronic component with two terminals. The effect of ...
. He argued that the wire and inner surface became positively charged, while the outer surface became negatively charged. This caused an imbalance in fluid, and a person touching both portions of the jar allowed the fluid to flow normally. Despite being a simpler theory, it was heavily debated whether electricity was made up of one fluid or two for a century.


Significance of the one-fluid theory

The one-fluid theory shows a significant shift in how the scientific community thought about electricity. Prior to Franklin's theory, there were many competing theories on how electricity functioned. Franklin's theory soon became the most widely accepted at the time. Franklin's theory is also notable, because it is the first theory that viewed electricity as the accumulation of ‘charge’ from elsewhere, rather than an excitation of the matter already present in an object. Franklin's theory also provides the basis for
conventional current An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. The moving ...
, the thinking of electricity as being the movement of positive charges. Franklin arbitrarily thought of his electrical fluid as being of a positive charge, and therefore all thought was done in the frame of mind of a positive flow. This permeated the mindset of the scientific community to the point that electricity is still being thought of as the flow of positive charges, despite proof that electricity moving through metals (the most common conductor) is done by the
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
, or negative particle. Franklin was also the first person to suggest that lightning was in fact electricity. Franklin suggested that lightning was just a larger version of the small sparks that appeared between two charged objects. He therefore predicted that lightning could be shaped and directed by using a pointed conductor. This was the basis for his famous kite experiment.


Shortcomings of the theory

Although the one-fluid theory marked a significant advance in discussions of electricity, it did have some deficiencies. Franklin created the theory to explain discharges, an aspect which had been mostly ignored previously. While it explained this well, it was not able to fully explain electrical attraction and repulsion. It made sense that two objects with too much fluid would push away from each other, and why two objects with largely different amounts of fluid would pull towards each other. However, it didn't make sense that two objects with no fluid would repel each other. Too little fluid should not cause a repulsion. Another difficulty with this model of electricity is that it ignores the interactions between electricity and magnetism. Although this relationship was not well-studied at the time, it was known that there was some connection between the two phenomena. Franklin's model makes no reference to these forces, and makes no attempt to explain them. Although fluid theory was the predominant viewpoint for a time, it was eventually replaced by more modern theories, specifically one which used observations about attractions between current-carrying wires to describe the magnetic effects between them.


Connections to magnetism

Neither du Fay nor Franklin described the effects of magnetism in their theories, with both concerning themselves only with electrical effects. However, theories on magnetism followed a very similar pattern as those on electricity. Charles Coulomb described magnets as containing two magnetic fluids, aural and boreal, which could combine to describe magnetic attraction and repulsion. The related one-fluid theory for magnetism was proposed by
Franz Aepinus Franz Ulrich Theodor Aepinus (13 December 172410 August 1802) was a German mathematician, scientist, and natural philosopher residing in the Russian Empire. Aepinus is best known for his researches, theoretical and experimental, in electricity ...
, who described magnets as containing too much or too little magnetic fluid. These theories of electricity and magnetism were thought of as two separate phenomena, until
Hans Christian Ørsted Hans Christian Ørsted ( , ; often rendered Oersted in English; 14 August 17779 March 1851) was a Danish physicist and chemist who discovered that electric currents create magnetic fields, which was the first connection found between electricit ...
noticed that a compass needle would deflect from magnetic north when placed near an electric current. This caused him to develop theories that electricity and magnetism were interrelated and could affect one another. Ørsted's work was the basis for a theory by French physicist
André-Marie Ampère André-Marie Ampère (, ; ; 20 January 177510 June 1836) was a French physicist and mathematician who was one of the founders of the science of classical electromagnetism, which he referred to as "electrodynamics". He is also the inventor of nu ...
, which unified the relation between magnetism and electricity.


See also

;General *
Contact tension Contact electrification is a phrase that describes a phenomenon whereby surfaces become electrically charged, via a number of possible mechanisms, when two or more objects come within close proximity of one another. When two objects are "touched" ...
*
Hydraulic analogy The electronic–hydraulic analogy (derisively referred to as the drain-pipe theory by Oliver Lodge) is the most widely used analogy for "electron fluid" in a metal conductor. Since electric current is invisible and the processes in play in ...
* Imponderable fluid ; Histories * History of the electric charge * History of electrochemistry


References


External links


A letter from Charles-François de Cisternay Du Fay concerning electricity.
, Phil. Trans. 38 (1734) 258-266

{{DEFAULTSORT:Fluid Theory Of Electricity Electricity Obsolete theories in physics