HOME

TheInfoList



OR:

The fluid mosaic model explains various observations regarding the structure of functional
cell membranes The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (the ...
. According to this biological model, there is a lipid bilayer (two molecules thick layer consisting primarily of
amphipathic An amphiphile (from the Greek αμφις amphis, both, and φιλíα philia, love, friendship), or amphipath, is a chemical compound possessing both hydrophilic (''water-loving'', polar) and lipophilic (''fat-loving'') properties. Such a compoun ...
phospholipids) in which protein
molecules A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioche ...
are embedded. The phospholipid bilayer gives fluidity and elasticity to the membrane. Small amounts of carbohydrates are also found in the cell membrane. The biological model, which was devised by
Seymour Jonathan Singer Seymour Jonathan Singer (May 23, 1924 – February 2, 2017) was an American cell biologist and professor of biology, emeritus, at the University of California, San Diego. Biography Singer was born in New York City and attended Columbia Univers ...
and
Garth L. Nicolson Garth L. Nicolson (born October 1, 1943) is an American biochemist who made a landmark scientific model for cell membrane, known as the Fluid Mosaic Model. He is the founder of The Institute for Molecular Medicine at California, and he serves as ...
in 1972, describes the cell membrane as a
two-dimensional liquid A two-dimensional liquid (2D liquid) is a collection of objects constrained to move in a planar or other two-dimensional space in a liquid state. Relations with 3D liquids The movement of the particles in a 2D liquid is similar to 3D, but with li ...
that restricts the lateral diffusion of membrane components. Such domains are defined by the existence of regions within the membrane with special lipid and protein cocoon that promote the formation of lipid rafts or protein and glycoprotein complexes. Another way to define membrane domains is the association of the lipid membrane with the cytoskeleton filaments and the extracellular matrix through membrane proteins. The current model describes important features relevant to many cellular processes, including: cell-cell signaling,
apoptosis Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes includ ...
,
cell division Cell division is the process by which a parent cell divides into two daughter cells. Cell division usually occurs as part of a larger cell cycle in which the cell grows and replicates its chromosome(s) before dividing. In eukaryotes, there a ...
, membrane budding, and cell fusion. The fluid mosaic model is the most acceptable model of the plasma membrane. Its main function is to separate the contents of the cell from the exterior.


Chemical makeup


Experimental evidence

The fluid property of functional biological membranes had been determined through
labeling Labelling or using a label is describing someone or something in a word or short phrase. For example, the label "criminal" may be used to describe someone who has broken a law. Labelling theory is a theory in sociology which ascribes labelling ...
experiments, x-ray diffraction, and calorimetry. These studies showed that integral membrane proteins diffuse at rates affected by the viscosity of the lipid bilayer in which they were embedded, and demonstrated that the molecules within the cell membrane are dynamic rather than static. Previous models of biological membranes included the Robertson Unit Membrane Model and the Davson-Danielli Tri-Layer model. These models had proteins present as sheets neighboring a lipid layer, rather than incorporated into the phospholipid bilayer. Other models described repeating, regular units of protein and lipid. These models were not well supported by microscopy and
thermodynamic Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of ther ...
data, and did not accommodate evidence for dynamic membrane properties. An important experiment that provided evidence supporting fluid and dynamic biological was performed by Frye and Edidin. They used
Sendai virus ''Murine respirovirus'', formerly ''Sendai virus'' (SeV) and previously also known as murine parainfluenza virus type 1 or hemagglutinating virus of Japan (HVJ), is an enveloped,150-200 nm in diameter, a negative sense, single-stranded RN ...
to force human and mouse cells to fuse and form a
heterokaryon A heterokaryon is a multinucleate cell that contains genetically different nuclei. Heterokaryotic and heterokaryosis are derived terms. This is a special type of syncytium. This can occur naturally, such as in the mycelium of fungi during sexual ...
. Using antibody staining, they were able to show that the mouse and human proteins remained segregated to separate halves of the heterokaryon a short time after cell fusion. However, the proteins eventually diffused and over time the border between the two halves was lost. Lowering the temperature slowed the rate of this diffusion by causing the membrane phospholipids to transition from a fluid to a gel phase. Singer and Nicolson rationalized the results of these experiments using their fluid mosaic model. The fluid mosaic model explains changes in structure and behavior of cell membranes under different temperatures, as well as the association of membrane proteins with the membranes. While Singer and Nicolson had substantial evidence drawn from multiple subfields to support their model, recent advances in fluorescence microscopy and
structural biology Structural biology is a field that is many centuries old which, and as defined by the Journal of Structural Biology, deals with structural analysis of living material (formed, composed of, and/or maintained and refined by living cells) at every le ...
have validated the fluid mosaic nature of cell membranes.


Subsequent developments


Membrane asymmetry

Additionally, the two leaflets of biological membranes are asymmetric and divided into subdomains composed of specific proteins or lipids, allowing spatial segregation of biological processes associated with membranes. Cholesterol and cholesterol-interacting proteins can concentrate into lipid rafts and constrain cell signaling processes to only these rafts. Another form of asymmetry was shown by the work of Mouritsen and Bloom in 1984, where they proposed a Mattress Model of lipid-protein interactions to address the biophysical evidence that the membrane can range in thickness and hydrophobicity of proteins.


Non-bilayer membranes

The existence of non-bilayer lipid formations with important biological functions was confirmed subsequent to publication of the fluid mosaic model. These membrane structures may be useful when the cell needs to propagate a non bilayer form, which occurs during cell division and the formation of a gap junction.


Membrane curvature

The membrane bilayer is not always flat. Local curvature of the membrane can be caused by the asymmetry and non-bilayer organization of lipids as discussed above. More dramatic and functional curvature is achieved through
BAR domain In molecular biology, BAR domains are highly conserved protein dimerisation domains that occur in many proteins involved in membrane dynamics in a cell. The BAR domain is banana-shaped and binds to membrane via its concave face. It is cap ...
s, which bind to phosphatidylinositol on the membrane surface, assisting in
vesicle Vesicle may refer to: ; In cellular biology or chemistry * Vesicle (biology and chemistry), a supramolecular assembly of lipid molecules, like a cell membrane * Synaptic vesicle ; In human embryology * Vesicle (embryology), bulge-like features o ...
formation,
organelle In cell biology, an organelle is a specialized subunit, usually within a cell, that has a specific function. The name ''organelle'' comes from the idea that these structures are parts of cells, as organs are to the body, hence ''organelle,'' the ...
formation and cell division. Curvature development is in constant flux and contributes to the dynamic nature of biological membranes.


Lipid movement within the membrane

During the decade of 1970, it was acknowledged that individual lipid molecules undergo free lateral diffusion within each of the layers of the lipid membrane. Diffusion occurs at a high speed, with an average lipid molecule diffusing ~2 µm, approximately the length of a large bacterial cell, in about 1 second. It has also been observed that individual lipid molecules rotate rapidly around their own axis. Moreover, phospholipid molecules can, although they seldom do, migrate from one side of the lipid bilayer to the other (a process known as flip-flop). However, flip-flop might be enhanced by flippase enzymes. The processes described above influence the disordered nature of lipid molecules and interacting proteins in the lipid membranes, with consequences to membrane fluidity, signaling, trafficking and function.


Restrictions to bilayer fluidity

There are restrictions to the lateral mobility of the lipid and protein components in the fluid membrane imposed by the formation of subdomains within the lipid bilayer. These subdomains arise by several processes ''e.g.'' binding of membrane components to the extracellular matrix, nanometric membrane regions with a particular biochemical composition that promote the formation of lipid rafts and protein complexes mediated by protein-protein interactions. Furthermore, protein-cytoskeleton associations mediate the formation of “cytoskeletal fences”, corrals wherein lipid and membrane proteins can diffuse freely, but that they can seldom leave. Restriction on lateral diffusion rates of membrane components is very important because it allows the functional specialization of particular regions within the cell membranes.


Lipid rafts

Lipid rafts are membrane nanometric platforms with a particular lipid and protein composition that laterally diffuse, navigating on the liquid bilipid layer. Sphingolipids and cholesterol are important building blocks of the lipid rafts.


Protein complexes

Cell membrane proteins and glycoproteins do not exist as single elements of the lipid membrane, as first proposed by Singer and Nicolson in 1972. Rather, they occur as diffusing complexes within the membrane. The assembly of single molecules into these macromolecular complexes has important functional consequences for the cell; such as ion and metabolite transport, signaling,
cell adhesion Cell adhesion is the process by which cells interact and attach to neighbouring cells through specialised molecules of the cell surface. This process can occur either through direct contact between cell surfaces such as cell junctions or indir ...
, and
migration Migration, migratory, or migrate may refer to: Human migration * Human migration, physical movement by humans from one region to another ** International migration, when peoples cross state boundaries and stay in the host state for some minimum le ...
.


Cytoskeletal fences (corrals) and binding to the extracellular matrix

Some proteins embedded in the bilipid layer interact with the extracellular matrix outside the cell, cytoskeleton filaments inside the cell, and septin ring-like structures. These interactions have a strong influence on shape and structure, as well as on compartmentalization. Moreover, they impose physical constraints that restrict the free lateral diffusion of proteins and at least some lipids within the bilipid layer. When integral proteins of the lipid bilayer are tethered to the extracellular matrix, they are unable to diffuse freely. Proteins with a long intracellular domain may collide with a fence formed by cytoskeleton filaments. Both processes restrict the diffusion of proteins and lipids directly involved, as well as of other interacting components of the cell membranes.
Septins Septins are a group of GTP-binding proteins expressed in all eukaryotic cells except plants. Different septins form protein complexes with each other. These complexes can further assemble into filaments, rings and gauzes. Assembled as such, sep ...
are a family of GTP-binding proteins highly conserved among eukaryotes. Prokaryotes have similar proteins called paraseptins. They form compartmentalizing ring-like structures strongly associated with the cell membranes. Septins are involved in the formation of structures such as, cilia and flagella, dendritic spines, and yeast buds.


Historical timeline

* 1895 – Ernest Overton hypothesized that cell membranes are made out of lipids. * 1925 – Evert Gorter and François Grendel found that red blood cell membranes are formed by a fatty layer two molecules thick, ''i.e.'' they described the bilipid nature of the cell membrane. * 1935 –
Hugh Davson Hugh Davson, Baron Davson (25 November 1909 – 2 July 1996) was an English physiologist who worked on membrane transport and ocular fluids. Davson was born in Paddington, London, the son of physician Wilfred Maynard Davson and Mary Louisa Scott. ...
and
James Danielli James Frederic Danielli FRS (1911–1984) was an English biologist. He was famous for research on the structure and the permeability of cell membranes, developing a physical-chemical model in collaboration with the physiologist Hugh Davson ...
proposed that lipid membranes are layers composed by proteins and lipids with pore-like structures that allow specific permeability for certain molecules. Then, they suggested a model for the cell membrane, consisting of a lipid layer surrounded by protein layers at both sides of it. * 1957 – J. David Robertson, based on electron microscopy studies, establishes the "Unit Membrane Hypothesis". This, states that all membranes in the cell, ''i.e.'' plasma and organelle membranes, have the same structure: a bilayer of phospholipids with monolayers of proteins at both sides of it. * 1972 – SJ Singer and GL Nicolson proposed the fluid mosaic model as an explanation for the data and latest evidence regarding the structure and thermodynamics of cell membranes.


Notes and references

{{DEFAULTSORT:Fluid mosaic Membrane biology Organelles Cell anatomy