HOME

TheInfoList



OR:

The flatness problem (also known as the oldness problem) is a
cosmological Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', and in 1731 taken up in Latin by German philosopher ...
fine-tuning In theoretical physics, fine-tuning is the process in which parameters of a model must be adjusted very precisely in order to fit with certain observations. This had led to the discovery that the fundamental constants and quantities fall into suc ...
problem within the
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
model of the universe. Such problems arise from the observation that some of the initial conditions of the universe appear to be fine-tuned to very 'special' values, and that small deviations from these values would have extreme effects on the appearance of the universe at the current time. In the case of the flatness problem, the parameter which appears fine-tuned is the density of matter and energy in the universe. This value affects the curvature of space-time, with a very specific critical value being required for a flat universe. The current density of the universe is observed to be very close to this critical value. Since any departure of the total density from the critical value would increase rapidly over cosmic time, the early universe must have had a density even closer to the critical density, departing from it by one part in 1062 or less. This leads cosmologists to question how the initial density came to be so closely fine-tuned to this 'special' value. The problem was first mentioned by
Robert Dicke Robert Henry Dicke (; May 6, 1916 – March 4, 1997) was an American astronomer and physicist who made important contributions to the fields of astrophysics, atomic physics, cosmology and gravity. He was the Albert Einstein Professor in Scien ...
in 1969. The most commonly accepted solution among cosmologists is
cosmic inflation In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the early universe. The inflationary epoch lasted from  seconds after the conjectured Big Bang singularit ...
, the idea that the universe went through a brief period of extremely rapid expansion in the first fraction of a second after the Big Bang; along with the
monopole problem In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the early universe. The inflationary epoch lasted from  seconds after the conjectured Big Bang singulari ...
and the
horizon problem The horizon problem (also known as the homogeneity problem) is a cosmological fine-tuning problem within the Big Bang model of the universe. It arises due to the difficulty in explaining the observed homogeneity of causally disconnected regi ...
, the flatness problem is one of the three primary motivations for inflationary theory.


Energy density and the Friedmann equation

According to
Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theory ...
's
field equations A classical field theory is a physical theory that predicts how one or more physical fields interact with matter through field equations, without considering effects of quantization; theories that incorporate quantum mechanics are called quantum ...
of
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. G ...
, the structure of
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differen ...
is affected by the presence of
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic parti ...
and energy. On small scales space appears flat – as does the surface of the Earth if one looks at a small area. On large scales however, space is bent by the
gravitational In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the strong ...
effect of matter. Since relativity indicates that matter and energy are equivalent, this effect is also produced by the presence of energy (such as light and other electromagnetic radiation) in addition to matter. The amount of bending (or
curvature In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane. For curves, the canon ...
) of the universe depends on the density of matter/energy present. This relationship can be expressed by the first Friedmann equation. In a universe without a
cosmological constant In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: ), alternatively called Einstein's cosmological constant, is the constant coefficient of a term that Albert Einstein temporarily added to his field equ ...
, this is: :H^2 = \frac \rho - \frac Here H is the
Hubble parameter Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving a ...
, a measure of the rate at which the universe is expanding. \rho is the total density of mass and energy in the universe, a is the
scale factor In affine geometry, uniform scaling (or isotropic scaling) is a linear transformation that enlarges (increases) or shrinks (diminishes) objects by a '' scale factor'' that is the same in all directions. The result of uniform scaling is simil ...
(essentially the 'size' of the universe), and k is the curvature parameter — that is, a measure of how curved spacetime is. A positive, zero or negative value of k corresponds to a respectively closed, flat or open universe. The constants G and c are Newton's
gravitational constant The gravitational constant (also known as the universal gravitational constant, the Newtonian constant of gravitation, or the Cavendish gravitational constant), denoted by the capital letter , is an empirical physical constant involved in th ...
and the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit for ...
, respectively.
Cosmologists Physical cosmology is a branch of cosmology concerned with the study of cosmological models. A cosmological model, or simply cosmology, provides a description of the largest-scale structures and dynamics of the universe and allows study of f ...
often simplify this equation by defining a critical density, \rho_c. For a given value of H, this is defined as the density required for a flat universe, i.e. . Thus the above equation implies :\rho_c = \frac. Since the constant G is known and the expansion rate H can be measured by observing the speed at which distant galaxies are receding from us, \rho_c can be determined. Its value is currently around . The ratio of the actual density to this critical value is called Ω, and its difference from 1 determines the geometry of the universe: corresponds to a greater than critical density, , and hence a closed universe. gives a low density
open universe The shape of the universe, in physical cosmology, is the local and global geometry of the universe. The local features of the geometry of the universe are primarily described by its curvature, whereas the topology of the universe describes gen ...
, and Ω equal to exactly 1 gives a
flat universe The shape of the universe, in physical cosmology, is the local and global geometry of the universe. The local features of the geometry of the universe are primarily described by its curvature, whereas the topology of the universe describes gen ...
. The Friedmann equation, :\fracH^2 = \rho a^2 - \frac, can be re-arranged into :\rho_c a^2 - \rho a^2 = - \frac, which after factoring \rho a^2, and using \Omega=\rho/\rho_c, leads to :(\Omega^ - 1)\rho a^2 = \frac. The right hand side of the last expression above contains constants only and therefore the left hand side must remain constant throughout the evolution of the universe. As the universe expands the scale factor a increases, but the density \rho decreases as matter (or energy) becomes spread out. For the standard model of the universe which contains mainly matter and radiation for most of its history, \rho decreases more quickly than a^2 increases, and so the factor will decrease. Since the time of the Planck era, shortly after the Big Bang, this term has decreased by a factor of around 10^, and so must have increased by a similar amount to retain the constant value of their product.


Current value of Ω


Measurement

The value of Ω at the present time is denoted Ω0. This value can be deduced by measuring the curvature of spacetime (since , or \rho=\rho_c, is defined as the density for which the curvature ). The curvature can be inferred from a number of observations. One such observation is that of anisotropies (that is, variations with direction - see below) in the
Cosmic Microwave Background In Big Bang cosmology the cosmic microwave background (CMB, CMBR) is electromagnetic radiation that is a remnant from an early stage of the universe, also known as "relic radiation". The CMB is faint cosmic background radiation filling all space ...
(CMB) radiation. The CMB is
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) ligh ...
which fills the universe, left over from an early stage in its history when it was filled with
photons A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are Massless particle, massless ...
and a hot, dense plasma. This plasma cooled as the universe expanded, and when it cooled enough to form stable
atoms Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, and ...
it no longer absorbed the photons. The photons present at that stage have been propagating ever since, growing fainter and less energetic as they spread through the ever-expanding universe. The temperature of this radiation is almost the same at all points on the sky, but there is a slight variation (around one part in 100,000) between the temperature received from different directions. The angular scale of these fluctuations - the typical angle between a hot patch and a cold patch on the skySince there are fluctuations on many scales, not a single angular separation between hot and cold spots, the necessary measure is the angular scale of the first peak in the anisotropies'
power spectrum The power spectrum S_(f) of a time series x(t) describes the distribution of power into frequency components composing that signal. According to Fourier analysis, any physical signal can be decomposed into a number of discrete frequencies, ...
. See Cosmic Microwave Background#Primary anisotropy.
- depends on the curvature of the universe which in turn depends on its density as described above. Thus, measurements of this angular scale allow an estimation of Ω0. Another probe of Ω0 is the frequency of Type-Ia
supernovae A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or when ...
at different distances from Earth. These supernovae, the explosions of degenerate white dwarf stars, are a type of
standard candle The cosmic distance ladder (also known as the extragalactic distance scale) is the succession of methods by which astronomers determine the distances to celestial objects. A ''direct'' distance measurement of an astronomical object is possible o ...
; this means that the processes governing their intrinsic brightness are well understood so that a measure of ''apparent'' brightness when seen from Earth can be used to derive accurate distance measures for them (the apparent brightness decreasing in proportion to the square of the distance - see
luminosity distance Luminosity distance ''DL'' is defined in terms of the relationship between the absolute magnitude ''M'' and apparent magnitude ''m'' of an astronomical object. : M = m - 5 \log_\!\, which gives: : D_L = 10^ where ''DL'' is measured in parsecs. F ...
). Comparing this distance to the
redshift In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and simultaneous increase in fr ...
of the supernovae gives a measure of the rate at which the universe has been expanding at different points in history. Since the expansion rate evolves differently over time in cosmologies with different total densities, Ω0 can be inferred from the supernovae data. Data from the
Wilkinson Microwave Anisotropy Probe The Wilkinson Microwave Anisotropy Probe (WMAP), originally known as the Microwave Anisotropy Probe (MAP and Explorer 80), was a NASA spacecraft operating from 2001 to 2010 which measured temperature differences across the sky in the cosmic mi ...
(measuring CMB anisotropies) combined with that from the
Sloan Digital Sky Survey The Sloan Digital Sky Survey or SDSS is a major multi-spectral imaging and spectroscopic redshift survey using a dedicated 2.5-m wide-angle optical telescope at Apache Point Observatory in New Mexico, United States. The project began in 2000 ...
and observations of type-Ia supernovae constrain Ω0 to be 1 within 1%. In other words, the term , Ω − 1, is currently less than 0.01, and therefore must have been less than 10−62 at the Planck era.


Implication

This tiny value is the crux of the flatness problem. If the initial density of the universe could take any value, it would seem extremely surprising to find it so 'finely tuned' to the critical value \rho_c. Indeed, a very small departure of Ω from 1 in the early universe would have been magnified during billions of years of expansion to create a current density very far from critical. In the case of an overdensity this would lead to a universe so dense it would cease expanding and collapse into a Big Crunch (an opposite to the Big Bang in which all matter and energy falls back into an extremely dense state) in a few years or less; in the case of an underdensity it would expand so quickly and become so sparse it would soon seem essentially empty, and
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the strong ...
would not be strong enough by comparison to cause matter to collapse and form galaxies. In either case the universe would contain no complex structures such as galaxies, stars, planets and any form of life. This problem with the Big Bang model was first pointed out by
Robert Dicke Robert Henry Dicke (; May 6, 1916 – March 4, 1997) was an American astronomer and physicist who made important contributions to the fields of astrophysics, atomic physics, cosmology and gravity. He was the Albert Einstein Professor in Scien ...
in 1969, and it motivated a search for some reason the density should take such a specific value.


Solutions to the problem

Some cosmologists agreed with Dicke that the flatness problem was a serious one, in need of a fundamental reason for the closeness of the density to criticality. But there was also a school of thought which denied that there was a problem to solve, arguing instead that since the universe must have some density it may as well have one close to \rho_ as far from it, and that speculating on a reason for any particular value was "beyond the domain of science". Enough cosmologists saw the problem as a real one, however, for various solutions to be proposed.


Anthropic principle

One solution to the problem is to invoke the
anthropic principle The anthropic principle, also known as the "observation selection effect", is the hypothesis, first proposed in 1957 by Robert Dicke, that there is a restrictive lower bound on how statistically probable our observations of the universe are, beca ...
, which states that humans should take into account the conditions necessary for them to exist when speculating about causes of the universe's properties. If two types of universe seem equally likely but only one is suitable for the evolution of intelligent life, the anthropic principle suggests that finding ourselves in that universe is no surprise: if the other universe had existed instead, there would be no observers to notice the fact. The principle can be applied to solve the flatness problem in two somewhat different ways. The first (an application of the 'strong anthropic principle') was suggested by C. B. Collins and Stephen Hawking, who in 1973 considered the existence of an infinite number of universes such that every possible combination of initial properties was held by some universe. In such a situation, they argued, only those universes with exactly the correct density for forming galaxies and stars would give rise to intelligent observers such as humans: therefore, the fact that we observe Ω to be so close to 1 would be "simply a reflection of our own existence." An alternative approach, which makes use of the 'weak anthropic principle', is to suppose that the universe is infinite in size, but with the density varying in different places (i.e. an
inhomogeneous Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the uniformity of a substance or organism. A material or image that is homogeneous is uniform in composition or character (i.e. color, shape, s ...
universe). Thus some regions will be over-dense and some under-dense . These regions may be extremely far apart - perhaps so far that light has not had time to travel from one to another during the
age of the universe In physical cosmology, the age of the universe is the time elapsed since the Big Bang. Astronomers have derived two different measurements of the age of the universe: a measurement based on direct observations of an early state of the universe ...
(that is, they lie outside one another's
cosmological horizon A cosmological horizon is a measure of the distance from which one could possibly retrieve information. This observable constraint is due to various properties of general relativity, the expanding universe, and the physics of Big Bang cosmology. Co ...
s). Therefore, each region would behave essentially as a separate universe: if we happened to live in a large patch of almost-critical density we would have no way of knowing of the existence of far-off under- or over-dense patches since no light or other signal has reached us from them. An appeal to the anthropic principle can then be made, arguing that intelligent life would only arise in those patches with Ω very close to 1, and that therefore our living in such a patch is unsurprising. This latter argument makes use of a version of the anthropic principle which is 'weaker' in the sense that it requires no speculation on multiple universes, or on the probabilities of various different universes existing instead of the current one. It requires only a single universe which is infinite - or merely large enough that many disconnected patches can form - and that the density varies in different regions (which is certainly the case on smaller scales, giving rise to galactic clusters and voids). However, the anthropic principle has been criticised by many scientists. For example, in 1979 Bernard Carr and
Martin Rees Martin John Rees, Baron Rees of Ludlow One or more of the preceding sentences incorporates text from the royalsociety.org website where: (born 23 June 1942) is a British cosmologist and astrophysicist. He is the fifteenth Astronomer Royal ...
argued that the principle “is entirely post hoc: it has not yet been used to predict any feature of the Universe.” Others have taken objection to its philosophical basis, with Ernan McMullin writing in 1994 that "the weak Anthropic principle is trivial ... and the strong Anthropic principle is indefensible." Since many physicists and philosophers of science do not consider the principle to be compatible with the
scientific method The scientific method is an empirical method for acquiring knowledge that has characterized the development of science since at least the 17th century (with notable practitioners in previous centuries; see the article history of scientific me ...
, another explanation for the flatness problem was needed.


Inflation

The standard solution to the flatness problem invokes cosmic inflation, a process whereby the universe expands
exponentially Exponential may refer to any of several mathematical topics related to exponentiation, including: *Exponential function, also: **Matrix exponential, the matrix analogue to the above *Exponential decay, decrease at a rate proportional to value *Expo ...
quickly (i.e. a grows as e^ with time t, for some constant \lambda) during a short period in its early history. The theory of inflation was first proposed in 1979, and published in 1981, by
Alan Guth Alan Harvey Guth (; born February 27, 1947) is an American theoretical physicist and cosmologist. Guth has researched elementary particle theory (and how particle theory is applicable to the early universe). He is Victor Weisskopf Professor of ...
. His two main motivations for doing so were the flatness problem and the
horizon problem The horizon problem (also known as the homogeneity problem) is a cosmological fine-tuning problem within the Big Bang model of the universe. It arises due to the difficulty in explaining the observed homogeneity of causally disconnected regi ...
, another fine-tuning problem of physical cosmology. However, “In December, 1980 when Guth was developing his inflation model, he was not trying to solve either the flatness or horizon problems. Indeed at that time, he knew nothing of the horizon problem and had never quantitatively calculated the flatness problem”. He was a particle physicist trying to solve the magnetic monopole problem. The proposed cause of inflation is a
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
which permeates space and drives the expansion. The field contains a certain energy density, but unlike the density of the matter or radiation present in the late universe, which decrease over time, the density of the inflationary field remains roughly constant as space expands. Therefore, the term \rho a^2 increases extremely rapidly as the scale factor a grows exponentially. Recalling the Friedmann Equation :(\Omega^ - 1)\rho a^2 = \frac, and the fact that the right-hand side of this expression is constant, the term , \Omega^ - 1 , must therefore decrease with time. Thus if , \Omega^ - 1 , initially takes any arbitrary value, a period of inflation can force it down towards 0 and leave it extremely small - around 10^ as required above, for example. Subsequent evolution of the universe will cause the value to grow, bringing it to the currently observed value of around 0.01. Thus the sensitive dependence on the initial value of Ω has been removed: a large and therefore 'unsurprising' starting value need not become amplified and lead to a very curved universe with no opportunity to form galaxies and other structures. This success in solving the flatness problem is considered one of the major motivations for inflationary theory.


Post inflation

Although inflationary theory is regarded as having had much success, and the evidence for it is compelling, it is not universally accepted: cosmologists recognize that there are still gaps in the theory and are open to the possibility that future observations will disprove it. In particular, in the absence of any firm evidence for what the field driving inflation should be, many different versions of the theory have been proposed. Many of these contain parameters or initial conditions which themselves require fine-tuning in much the way that the early density does without inflation. For these reasons work is still being done on alternative solutions to the flatness problem. These have included non-standard interpretations of the effect of dark energy and gravity, particle production in an oscillating universe, and use of a Bayesian statistical approach to argue that the problem is non-existent. The latter argument, suggested for example by Evrard and Coles, maintains that the idea that Ω being close to 1 is 'unlikely' is based on assumptions about the likely distribution of the parameter which are not necessarily justified. Despite this ongoing work, inflation remains by far the dominant explanation for the flatness problem. The question arises, however, whether it is still the dominant explanation because it is the best explanation, or because the community is unaware of progress on this problem. In particular, in addition to the idea that Ω is not a suitable parameter in this context, other arguments against the flatness problem have been presented: if the universe collapses in the future, then the flatness problem "exists", but only for a relatively short time, so a typical observer would not expect to measure Ω appreciably different from 1; in the case of a universe which expands forever with a positive cosmological constant, fine-tuning is needed not to achieve a (nearly) flat universe, but also to avoid it.


Einstein–Cartan theory

The flatness problem is naturally solved by the Einstein–Cartan–Sciama–Kibble theory of gravity, without an exotic form of matter required in inflationary theory. This theory extends general relativity by removing a constraint of the symmetry of the affine connection and regarding its antisymmetric part, the
torsion tensor In differential geometry, the notion of torsion is a manner of characterizing a twist or screw of a moving frame around a curve. The torsion of a curve, as it appears in the Frenet–Serret formulas, for instance, quantifies the twist of a curve ...
, as a dynamical variable. It has no free parameters. Including torsion gives the correct conservation law for the total (orbital plus intrinsic)
angular momentum In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed syste ...
of matter in the presence of gravity. The minimal coupling between torsion and Dirac spinors obeying the
nonlinear Dirac equation :''See Ricci calculus and Van der Waerden notation for the notation.'' In quantum field theory, the nonlinear Dirac equation is a model of self-interacting Dirac fermions. This model is widely considered in quantum physics as a toy model of self- ...
generates a spin-spin interaction which is significant in
fermion In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks and ...
ic matter at extremely high densities. Such an interaction averts the unphysical big bang singularity, replacing it with a bounce at a finite minimum scale factor, before which the Universe was contracting. The rapid expansion immediately after the big bounce explains why the present Universe at largest scales appears spatially flat, homogeneous and isotropic. As the density of the Universe decreases, the effects of torsion weaken and the Universe smoothly enters the radiation-dominated era.


See also

*
Magnetic monopole In particle physics, a magnetic monopole is a hypothetical elementary particle that is an isolated magnet with only one magnetic pole (a north pole without a south pole or vice versa). A magnetic monopole would have a net north or south "magneti ...
*
Horizon problem The horizon problem (also known as the homogeneity problem) is a cosmological fine-tuning problem within the Big Bang model of the universe. It arises due to the difficulty in explaining the observed homogeneity of causally disconnected regi ...


Notes


References

{{Portal bar, Physics, Space Physical cosmology Inflation (cosmology) Unsolved problems in physics