finite support
   HOME

TheInfoList



OR:

In mathematics, the support of a
real-valued In mathematics, value may refer to several, strongly related notions. In general, a mathematical value may be any definite mathematical object. In elementary mathematics, this is most often a number – for example, a real number such as or an i ...
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-oriente ...
f is the subset of the function domain containing the elements which are not mapped to zero. If the domain of f is a
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...
, then the support of f is instead defined as the smallest closed set containing all points not mapped to zero. This concept is used very widely in
mathematical analysis Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (m ...
.


Formulation

Suppose that f : X \to \R is a real-valued function whose domain is an arbitrary set X. The of f, written \operatorname(f), is the set of points in X where f is non-zero: \operatorname(f) = \. The support of f is the smallest subset of X with the property that f is zero on the subset's complement. If f(x) = 0 for all but a finite number of points x \in X, then f is said to have . If the set X has an additional structure (for example, a topology), then the support of f is defined in an analogous way as the smallest subset of X of an appropriate type such that f vanishes in an appropriate sense on its complement. The notion of support also extends in a natural way to functions taking values in more general sets than \R and to other objects, such as
measures Measure may refer to: * Measurement, the assignment of a number to a characteristic of an object or event Law * Ballot measure, proposed legislation in the United States * Church of England Measure, legislation of the Church of England * Measu ...
or distributions.


Closed support

The most common situation occurs when X is a
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...
(such as the real line or n-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean ...
) and f : X \to \R is a
continuous Continuity or continuous may refer to: Mathematics * Continuity (mathematics), the opposing concept to discreteness; common examples include ** Continuous probability distribution or random variable in probability and statistics ** Continuous ...
real (or
complex Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each ...
)-valued function. In this case, the of f, \operatorname(f), or the of f, is defined topologically as the closure (taken in X) of the subset of X where f is non-zero that is, \operatorname(f) := \operatorname_X\left(\\right) = \overline. Since the intersection of closed sets is closed, \operatorname(f) is the intersection of all closed sets that contain the set-theoretic support of f. For example, if f : \R \to \R is the function defined by f(x) = \begin 1 - x^2 & \text , x, < 1 \\ 0 & \text , x, \geq 1 \end then \operatorname(f), the support of f, or the closed support of f, is the closed interval 1, 1 since f is non-zero on the open interval (-1, 1) and the closure of this set is 1, 1 The notion of closed support is usually applied to continuous functions, but the definition makes sense for arbitrary real or complex-valued functions on a topological space, and some authors do not require that f : X \to \R (or f : X \to \Complex) be continuous.


Compact support

Functions with on a topological space X are those whose closed support is a
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact * Blood compact, an ancient ritual of the Philippines * Compact government, a type of colonial rule utilized in British ...
subset of X. If X is the real line, or n-dimensional Euclidean space, then a function has compact support if and only if it has , since a subset of \R^n is compact if and only if it is closed and bounded. For example, the function f : \R \to \R defined above is a continuous function with compact support 1, 1 If f : \R^n \to \R is a smooth function then because f is identically 0 on the open subset \R^n \smallsetminus \operatorname(f), all of f's partial derivatives of all orders are also identically 0 on \R^n \smallsetminus \operatorname(f). The condition of compact support is stronger than the condition of vanishing at infinity. For example, the function f : \R \to \R defined by f(x) = \frac vanishes at infinity, since f(x) \to 0 as , x, \to \infty, but its support \R is not compact. Real-valued compactly supported smooth functions on a
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean ...
are called
bump function In mathematics, a bump function (also called a test function) is a function f: \R^n \to \R on a Euclidean space \R^n which is both smooth (in the sense of having continuous derivatives of all orders) and compactly supported. The set of all bum ...
s.
Mollifier In mathematics, mollifiers (also known as ''approximations to the identity'') are smooth functions with special properties, used for example in distribution theory to create sequences of smooth functions approximating nonsmooth (generalized) f ...
s are an important special case of bump functions as they can be used in distribution theory to create
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is calle ...
s of smooth functions approximating nonsmooth (generalized) functions, via
convolution In mathematics (in particular, functional analysis), convolution is a mathematical operation on two functions ( and ) that produces a third function (f*g) that expresses how the shape of one is modified by the other. The term ''convolution'' ...
. In good cases, functions with compact support are
dense Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematically ...
in the space of functions that vanish at infinity, but this property requires some technical work to justify in a given example. As an intuition for more complex examples, and in the language of
limits Limit or Limits may refer to: Arts and media * ''Limit'' (manga), a manga by Keiko Suenobu * ''Limit'' (film), a South Korean film * Limit (music), a way to characterize harmony * "Limit" (song), a 2016 single by Luna Sea * "Limits", a 2019 ...
, for any \varepsilon > 0, any function f on the real line \R that vanishes at infinity can be approximated by choosing an appropriate compact subset C of \R such that \left, f(x) - I_C(x) f(x)\ < \varepsilon for all x \in X, where I_C is the indicator function of C. Every continuous function on a compact topological space has compact support since every closed subset of a compact space is indeed compact.


Essential support

If X is a topological measure space with a Borel measure \mu (such as \R^n, or a
Lebesgue measurable In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of ''n''-dimensional Euclidean space. For ''n'' = 1, 2, or 3, it coincides wit ...
subset of \R^n, equipped with Lebesgue measure), then one typically identifies functions that are equal \mu-almost everywhere. In that case, the of a measurable function f : X \to \R written \operatorname(f), is defined to be the smallest closed subset F of X such that f = 0 \mu-almost everywhere outside F. Equivalently, \operatorname(f) is the complement of the largest
open set In mathematics, open sets are a generalization of open intervals in the real line. In a metric space (a set along with a distance defined between any two points), open sets are the sets that, with every point , contain all points that are su ...
on which f = 0 \mu-almost everywhere \operatorname(f) := X \setminus \bigcup \left\. The essential support of a function f depends on the measure \mu as well as on f, and it may be strictly smaller than the closed support. For example, if f :
, 1 The comma is a punctuation mark that appears in several variants in different languages. It has the same shape as an apostrophe or single closing quotation mark () in many typefaces, but it differs from them in being placed on the baseline o ...
\to \R is the
Dirichlet function In mathematics, the Dirichlet function is the indicator function 1Q or \mathbf_\Q of the set of rational numbers Q, i.e. if ''x'' is a rational number and if ''x'' is not a rational number (i.e. an irrational number). \mathbf 1_\Q(x) = \begin 1 & ...
that is 0 on irrational numbers and 1 on rational numbers, and
, 1 The comma is a punctuation mark that appears in several variants in different languages. It has the same shape as an apostrophe or single closing quotation mark () in many typefaces, but it differs from them in being placed on the baseline o ...
/math> is equipped with Lebesgue measure, then the support of f is the entire interval
, 1 The comma is a punctuation mark that appears in several variants in different languages. It has the same shape as an apostrophe or single closing quotation mark () in many typefaces, but it differs from them in being placed on the baseline o ...
but the essential support of f is empty, since f is equal almost everywhere to the zero function. In analysis one nearly always wants to use the essential support of a function, rather than its closed support, when the two sets are different, so \operatorname(f) is often written simply as \operatorname(f) and referred to as the support.


Generalization

If M is an arbitrary set containing zero, the concept of support is immediately generalizable to functions f : X \to M. Support may also be defined for any algebraic structure with
identity Identity may refer to: * Identity document * Identity (philosophy) * Identity (social science) * Identity (mathematics) Arts and entertainment Film and television * ''Identity'' (1987 film), an Iranian film * ''Identity'' (2003 film), ...
(such as a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
,
monoid In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoid ...
, or
composition algebra In mathematics, a composition algebra over a field is a not necessarily associative algebra over together with a nondegenerate quadratic form that satisfies :N(xy) = N(x)N(y) for all and in . A composition algebra includes an involution ...
), in which the identity element assumes the role of zero. For instance, the family \Z^ of functions from the natural numbers to the
integers An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
is the
uncountable In mathematics, an uncountable set (or uncountably infinite set) is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal num ...
set of integer sequences. The subfamily \left\ is the countable set of all integer sequences that have only finitely many nonzero entries. Functions of finite support are used in defining algebraic structures such as group rings and free abelian groups.


In probability and measure theory

In
probability theory Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set ...
, the support of a probability distribution can be loosely thought of as the closure of the set of possible values of a random variable having that distribution. There are, however, some subtleties to consider when dealing with general distributions defined on a sigma algebra, rather than on a topological space. More formally, if X : \Omega \to \R is a random variable on (\Omega, \mathcal, P) then the support of X is the smallest closed set R_X \subseteq \R such that P\left(X \in R_X\right) = 1. In practice however, the support of a
discrete random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the po ...
X is often defined as the set R_X = \ and the support of a
continuous random variable In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon ...
X is defined as the set R_X = \ where f_X(x) is a
probability density function In probability theory, a probability density function (PDF), or density of a continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) ca ...
of X (the set-theoretic support). Note that the word can refer to the
logarithm In mathematics, the logarithm is the inverse function to exponentiation. That means the logarithm of a number  to the base  is the exponent to which must be raised, to produce . For example, since , the ''logarithm base'' 10 of ...
of the
likelihood The likelihood function (often simply called the likelihood) represents the probability of random variable realizations conditional on particular values of the statistical parameters. Thus, when evaluated on a given sample, the likelihood functi ...
of a probability density function.


Support of a distribution

It is possible also to talk about the support of a distribution, such as the Dirac delta function \delta(x) on the real line. In that example, we can consider test functions F, which are smooth functions with support not including the point 0. Since \delta(F) (the distribution \delta applied as
linear functional In mathematics, a linear form (also known as a linear functional, a one-form, or a covector) is a linear map from a vector space to its field of scalars (often, the real numbers or the complex numbers). If is a vector space over a field , the ...
to F) is 0 for such functions, we can say that the support of \delta is \ only. Since measures (including probability measures) on the real line are special cases of distributions, we can also speak of the support of a measure in the same way. Suppose that f is a distribution, and that U is an open set in Euclidean space such that, for all test functions \phi such that the support of \phi is contained in U, f(\phi) = 0. Then f is said to vanish on U. Now, if f vanishes on an arbitrary family U_ of open sets, then for any test function \phi supported in \bigcup U_, a simple argument based on the compactness of the support of \phi and a partition of unity shows that f(\phi) = 0 as well. Hence we can define the of f as the complement of the largest open set on which f vanishes. For example, the support of the Dirac delta is \.


Singular support

In Fourier analysis in particular, it is interesting to study the of a distribution. This has the intuitive interpretation as the set of points at which a distribution . For example, the Fourier transform of the
Heaviside step function The Heaviside step function, or the unit step function, usually denoted by or (but sometimes , or ), is a step function, named after Oliver Heaviside (1850–1925), the value of which is zero for negative arguments and one for positive argum ...
can, up to constant factors, be considered to be 1/x (a function) at x = 0. While x = 0 is clearly a special point, it is more precise to say that the transform of the distribution has singular support \: it cannot accurately be expressed as a function in relation to test functions with support including 0. It be expressed as an application of a
Cauchy principal value In mathematics, the Cauchy principal value, named after Augustin Louis Cauchy, is a method for assigning values to certain improper integrals which would otherwise be undefined. Formulation Depending on the type of singularity in the integrand ...
integral. For distributions in several variables, singular supports allow one to define and understand Huygens' principle in terms of
mathematical analysis Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (m ...
. Singular supports may also be used to understand phenomena special to distribution theory, such as attempts to 'multiply' distributions (squaring the Dirac delta function fails – essentially because the singular supports of the distributions to be multiplied should be disjoint).


Family of supports

An abstract notion of on a
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...
X, suitable for
sheaf theory In mathematics, a sheaf is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could ...
, was defined by Henri Cartan. In extending
Poincaré duality In mathematics, the Poincaré duality theorem, named after Henri Poincaré, is a basic result on the structure of the homology and cohomology groups of manifolds. It states that if ''M'' is an ''n''-dimensional oriented closed manifold (compact ...
to manifolds that are not compact, the 'compact support' idea enters naturally on one side of the duality; see for example
Alexander–Spanier cohomology In mathematics, particularly in algebraic topology, Alexander–Spanier cohomology is a cohomology theory for topological spaces. History It was introduced by for the special case of compact metric spaces, and by for all topological spaces, ba ...
. Bredon, ''Sheaf Theory'' (2nd edition, 1997) gives these definitions. A family \Phi of closed subsets of X is a , if it is down-closed and closed under finite union. Its is the union over \Phi. A family of supports that satisfies further that any Y in \Phi is, with the
subspace topology In topology and related areas of mathematics, a subspace of a topological space ''X'' is a subset ''S'' of ''X'' which is equipped with a topology induced from that of ''X'' called the subspace topology (or the relative topology, or the induced to ...
, a
paracompact space In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by . Every compact space is paracompact. Every paracompact Hausdorff space is normal ...
; and has some Z in \Phi which is a
neighbourhood A neighbourhood (British English, Irish English, Australian English and Canadian English) or neighborhood (American English; American and British English spelling differences, see spelling differences) is a geographically localised community ...
. If X is a
locally compact space In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which ev ...
, assumed Hausdorff the family of all
compact subset In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i. ...
s satisfies the further conditions, making it paracompactifying.


See also

* * * *


Citations


References

* * Set theory Real analysis Topology Topology of function spaces