HOME

TheInfoList



OR:

Film speed is the measure of a
photographic film Photographic film is a strip or sheet of transparent film base coated on one side with a gelatin photographic emulsion, emulsion containing microscopically small light-sensitive silver halide crystals. The sizes and other characteristics of th ...
's sensitivity to light, determined by
sensitometry Sensitometry is the scientific study of light-sensitive materials, especially photographic film. The study has its origins in the work by Ferdinand Hurter and Vero Charles Driffield (circa 1876) with early black-and-white emulsions. They determine ...
and measured on various numerical scales, the most recent being the ISO system. A closely related ISO system is used to describe the relationship between exposure and output image
lightness Lightness is a visual perception of the luminance (L) of an object. It is often judged relative to a similarly lit object. In colorimetry and color appearance models, lightness is a prediction of how an illuminated color will appear to a stand ...
in digital cameras. Relatively insensitive film, with a correspondingly lower speed index, requires more exposure to light to produce the same image density as a more sensitive film, and is thus commonly termed a ''slow film''. Highly sensitive films are correspondingly termed ''fast films''. In both digital and film photography, the reduction of exposure corresponding to use of higher sensitivities generally leads to reduced image quality (via coarser
film grain Film grain or granularity is the random optical texture of processed photographic film Photographic film is a strip or sheet of transparent film base coated on one side with a gelatin photographic emulsion, emulsion containing microscopica ...
or higher
image noise Image noise is random variation of brightness or color information in images, and is usually an aspect of electronic noise. It can be produced by the image sensor and circuitry of a Image scanner, scanner or digital camera. Image noise can also ...
of other types). In short, the higher the sensitivity, the grainier the image will be. Ultimately sensitivity is limited by the
quantum efficiency The term quantum efficiency (QE) may apply to incident photon to converted electron (IPCE) ratio of a photosensitivity, photosensitive device, or it may refer to the Tunnel magnetoresistance, TMR effect of a Magnetic Tunnel Junction. This articl ...
of the film or sensor.


Film speed measurement systems


Historical systems


Warnerke

The first known practical sensitometer, which allowed measurements of the speed of photographic materials, was invented by the Polish engineer Leon Warnerke – pseudonym of (1837–1900) – in 1880, among the achievements for which he was awarded the Progress Medal of the Photographic Society of Great Britain in 1882. It was commercialized since 1881. The Warnerke Standard Sensitometer consisted of a frame holding an opaque screen with an array of typically 25 numbered, gradually pigmented squares brought into contact with the photographic plate during a timed test exposure under a phosphorescent tablet excited before by the light of a burning
magnesium Magnesium is a chemical element with the Symbol (chemistry), symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group ...
ribbon. The speed of the emulsion was then expressed in 'degrees' Warnerke (sometimes seen as Warn. or °W.) corresponding with the last number visible on the exposed plate after development and fixation. Each number represented an increase of 1/3 in speed, typical plate speeds were between 10° and 25° Warnerke at the time. His system saw some success but proved to be unreliable due to its spectral sensitivity to light, the fading intensity of the light emitted by the phosphorescent tablet after its excitation as well as high built-tolerances. The concept, however, was later built upon in 1900 by Henry Chapman Jones (1855–1932) in the development of his plate tester and modified speed system.


Hurter & Driffield

Another early practical system for measuring the sensitivity of an emulsion was that of
Hurter and Driffield Ferdinand Hurter (1844–1898) and Vero Charles Driffield (1848–1915) were nineteenth-century photographic scientists who brought quantitative scientific practice to photography through the methods of sensitometry and densitometry. Among thei ...
(H&D), originally described in 1890, by the Swiss-born Ferdinand Hurter (1844–1898) and British Vero Charles Driffield (1848–1915). In their system, speed numbers were inversely proportional to the exposure required. For example, an emulsion rated at 250 H&D would require ten times the exposure of an emulsion rated at 2500 H&D. The methods to determine the sensitivity were later modified in 1925 (in regard to the light source used) and in 1928 (regarding light source, developer and proportional factor)—this later variant was sometimes called "H&D 10". The H&D system was officially accepted as a standard in the former
Soviet Union The Soviet Union,. officially the Union of Soviet Socialist Republics. (USSR),. was a List of former transcontinental countries#Since 1700, transcontinental country that spanned much of Eurasia from 1922 to 1991. A flagship communist state, ...
from 1928 until September 1951, when it was superseded by
GOST GOST (russian: ГОСТ) refers to a set of International standard, international Technical standard, technical Standardization, standards maintained by the ''Euro-Asian Council for Standardization, Metrology and Certification (EASC)'', a region ...
2817–50.


Scheiner

The ''Scheinergrade'' (Sch.) system was devised by the German astronomer
Julius Scheiner Julius Scheiner (25 November 1858 – 20 December 1913) was a German people, German astronomer, born in Cologne and educated at Bonn. He became assistant at the astrophysical observatory in Potsdam in 1887 and its observer in chief in 1898, thre ...
(1858–1913) in 1894 originally as a method of comparing the speeds of plates used for astronomical photography. Scheiner's system rated the speed of a plate by the least exposure to produce a visible darkening upon development. Speed was expressed in degrees Scheiner, originally ranging from 1° Sch. to 20° Sch., where an increment of 19° Sch. corresponded to a hundredfold increase in sensitivity, which meant that an increment of 3° Sch. came close to a doubling of sensitivity. :\sqrt 93 = 2.06914...\approx 2 The system was later extended to cover larger ranges and some of its practical shortcomings were addressed by the Austrian scientist
Josef Maria Eder Josef Maria Eder (16 March 1855 – 18 October 1944) was an Austria The Republic of Austria, commonly just Austria, , bar, Östareich is a country in the southern part of Central Europe, lying in the Eastern Alps. It is a federation of ...
(1855–1944) and Flemish-born botanist (1896–1960), (who, in 1919/1920, jointly developed their ''Eder–Hecht neutral wedge sensitometer'' measuring emulsion speeds in ''Eder–Hecht'' grades). Still, it remained difficult for manufacturers to reliably determine film speeds, often only by comparing with competing products, so that an increasing number of modified semi-Scheiner-based systems started to spread, which no longer followed Scheiner's original procedures and thereby defeated the idea of comparability. Scheiner's system was eventually abandoned in Germany, when the standardized DIN system was introduced in 1934. In various forms, it continued to be in widespread use in other countries for some time.


DIN

The DIN system, officially DIN standard 4512 by the ' (then known as the ' (DNA)), was published in January 1934. It grew out of drafts for a standardized method of sensitometry put forward by the ' as proposed by the committee for sensitometry of the ' since 1930 and presented by (1868–1945) and
Emanuel Goldberg Emanuel Goldberg ( he, עמנואל גולדברג; yi, עמנואל גאָלדבערג; russian: Эмануэль Гольдберг) (born: 31 August 1881; died: 13 September 1970) was an Israeli physicist and inventor. He was born in Moscow a ...
(1881–1970) at the influential VIII.
International Congress of Photography International is an adjective (also used as a noun) meaning "between nations". International may also refer to: Music Albums * International (Kevin Michael album), ''International'' (Kevin Michael album), 2011 * International (New Order album), ' ...
(German: ') held in
Dresden Dresden (, ; Upper Saxon: ''Dräsdn''; wen, label= Upper Sorbian, Drježdźany) is the capital city of the German state of Saxony and its second most populous city, after Leipzig. It is the 12th most populous city of Germany, the fourth la ...
from 3 to 8 August 1931. The DIN system was inspired by
Scheiner Scheiner is a German surname. Notable people with the surname include: *Artuš Scheiner, Czech painter and illustrator *Christoph Scheiner, Jesuit priest, physicist and astronomer (born c. 1573) *David Scheiner (born 1938), American physician and a ...
's system, but the sensitivities were represented as the base 10 logarithm of the sensitivity multiplied by 10, similar to
decibel The decibel (symbol: dB) is a relative unit of measurement equal to one tenth of a bel (B). It expresses the ratio of two values of a Power, root-power, and field quantities, power or root-power quantity on a logarithmic scale. Two signals whose ...
s. Thus an increase of 20° (and not 19° as in Scheiner's system) represented a hundredfold increase in sensitivity, and a difference of 3° was much closer to the base 10 logarithm of 2 (0.30103...): :\log_ = 0.30103... \approx 3/10 As in the Scheiner system, speeds were expressed in 'degrees'. Originally the sensitivity was written as a fraction with 'tenths' (for example "18/10° DIN"), where the resultant value 1.8 represented the relative base 10 logarithm of the speed. 'Tenths' were later abandoned with DIN 4512:1957-11, and the example above would be written as "18° DIN". The degree symbol was finally dropped with DIN 4512:1961-10. This revision also saw significant changes in the definition of film speeds in order to accommodate then-recent changes in the American ASA PH2.5-1960 standard, so that film speeds of black-and-white negative film effectively would become doubled, that is, a film previously marked as "18° DIN" would now be labeled as "21 DIN" without emulsion changes. Originally only meant for black-and-white negative film, the system was later extended and regrouped into nine parts, including DIN 4512-1:1971-04 for black-and-white negative film, DIN 4512-4:1977-06 for color reversal film and DIN 4512-5:1977-10 for color negative film. On an international level the German DIN 4512 system has been effectively superseded in the 1980s by ISO 6:1974, ISO 2240:1982, and ISO 5800:1979 where the same sensitivity is written in linear and logarithmic form as "ISO 100/21°" (now again with degree symbol). These ISO standards were subsequently adopted by DIN as well. Finally, the latest DIN 4512 revisions were replaced by corresponding ISO standards, DIN 4512-1:1993-05 by DIN ISO 6:1996-02 in September 2000, DIN 4512-4:1985-08 by DIN ISO 2240:1998-06 and DIN 4512-5:1990-11 by DIN ISO 5800:1998-06 both in July 2002.


BSI

The film speed scale recommended by the
British Standards Institution The British Standards Institution (BSI) is the Standards organization, national standards body of the United Kingdom. BSI produces technical standards on a wide range of products and services and also supplies certification and standards-relat ...
(BSI) was almost identical to the DIN system except that the BS number was 10 degrees greater than the DIN number.


Weston

Before the advent of the ASA system, the system of ''Weston film speed ratings'' was introduced by Edward Faraday Weston (1878–1971) and his father Dr. Edward Weston (1850–1936), a British-born electrical engineer, industrialist and founder of the US-based Weston Electrical Instrument Corporation, with the Weston model 617, one of the earliest photo-electric exposure meters, in August 1932. The meter and film rating system were invented by William Nelson Goodwin, Jr., who worked for them and later received a Howard N. Potts Medal for his contributions to engineering. The company tested and frequently published speed ratings for most films of the time. Weston film speed ratings could since be found on most Weston exposure meters and were sometimes referred to by film manufacturers and third parties in their exposure guidelines. Since manufacturers were sometimes creative about film speeds, the company went as far as to warn users about unauthorized uses of their film ratings in their "Weston film ratings" booklets. The Weston Cadet (model 852 introduced in 1949), Direct Reading (model 853 introduced 1954) and Master III (models 737 and S141.3 introduced in 1956) were the first in their line of exposure meters to switch and utilize the meanwhile established ASA scale instead. Other models used the original Weston scale up until ca. 1955. The company continued to publish Weston film ratings after 1955, but while their recommended values often differed slightly from the ASA film speeds found on film boxes, these newer Weston values were based on the ASA system and had to be converted for use with older Weston meters by subtracting 1/3 exposure stop as per Weston's recommendation. Vice versa, "old" Weston film speed ratings could be converted into "new" Westons and the ASA scale by adding the same amount, that is, a film rating of 100 Weston (up to 1955) corresponded with 125 ASA (as per ASA PH2.5-1954 and before). This conversion was not necessary on Weston meters manufactured and Weston film ratings published since 1956 due to their inherent use of the ASA system; however the changes of the ASA PH2.5-1960 revision may be taken into account when comparing with newer ASA or ISO values.


General Electric

Prior to the establishment of the ASA scale and similar to Weston film speed ratings another manufacturer of photo-electric exposure meters,
General Electric General Electric Company (GE) is an American multinational conglomerate founded in 1892, and incorporated in New York state and headquartered in Boston Boston (), officially the City of Boston, is the capital city, state capital a ...
, developed its own rating system of so-called ''General Electric film values'' (often abbreviated as ''G-E'' or ''GE'') around 1937. Film speed values for use with their meters were published in regularly updated ''General Electric Film Values'' leaflets and in the ''General Electric Photo Data Book''. General Electric switched to use the ASA scale in 1946. Meters manufactured since February 1946 are equipped with the ASA scale (labeled "Exposure Index") already. For some of the older meters with scales in "Film Speed" or "Film Value" (e.g. models DW-48, DW-49 as well as early DW-58 and GW-68 variants), replaceable hoods with ASA scales were available from the manufacturer. The company continued to publish recommended film values after that date, however, they were then aligned to the ASA scale.


ASA

Based on earlier research work by Loyd Ancile Jones (1884–1954) of
Kodak The Eastman Kodak Company (referred to simply as Kodak ) is an American public company that produces various products related to its historic basis in analogue photography. The company is headquartered in Rochester, New York, and is incorpor ...
and inspired by the systems of Weston film speed ratings and General Electric film values, the
American Standards Association The American National Standards Institute (ANSI ) is a private non-profit organization that oversees the development of Standardization, voluntary consensus standards for products, services, processes, systems, and personnel in the United S ...
(now named
ANSI The American National Standards Institute (ANSI ) is a private non-profit organization that oversees the development of Standardization, voluntary consensus standards for products, services, processes, systems, and personnel in the United S ...
) defined a new method to determine and specify film speeds of black-and-white negative films in 1943. ASA Z38.2.1–1943 was revised in 1946 and 1947 before the standard grew into ASA PH2.5-1954. Originally, ASA values were frequently referred to as ''American standard speed numbers'' or ''ASA exposure-index numbers''. (See also: Exposure Index (EI).) The ASA scale is a linear scale, that is, a film denoted as having a film speed of 200 ASA is twice as fast as a film with 100 ASA. The ASA standard underwent a major revision in 1960 with ASA PH2.5-1960, when the method to determine film speed was refined and previously applied safety factors against under-exposure were abandoned, effectively doubling the nominal speed of many black-and-white negative films. For example, an Ilford HP3 that had been rated at 200 ASA before 1960 was labeled 400 ASA afterwards without any change to the emulsion. Similar changes were applied to the DIN system with DIN 4512:1961-10 and the BS system with BS 1380:1963 in the following years. In addition to the established arithmetic speed scale, ASA PH2.5-1960 also introduced logarithmic ASA grades (100 ASA = 5° ASA), where a difference of 1° ASA represented a full exposure stop and therefore the doubling of a film speed. For some while, ASA grades were also printed on film boxes, and they saw life in the form of the
APEX The apex is the highest point of something. The word may also refer to: Arts and media Fictional entities * Apex (comics), a teenaged super villainess in the Marvel Universe * Ape-X, a super-intelligent ape in the Squadron Supreme universe *Apex, ...
speed value ''Sv'' (without degree symbol) as well. ASA PH2.5-1960 was revised as ANSI PH2.5-1979, without the logarithmic speeds, and later replaced by NAPM IT2.5–1986 of the National Association of Photographic Manufacturers, which represented the US adoption of the international standard ISO 6. The latest issue of ANSI/NAPM IT2.5 was published in 1993. The standard for color negative film was introduced as ASA PH2.27-1965 and saw a string of revisions in 1971, 1976, 1979 and 1981, before it finally became ANSI IT2.27–1988 prior to its withdrawal. Color reversal film speeds were defined in ANSI PH2.21-1983, which was revised in 1989 before it became ANSI/NAPM IT2.21 in 1994, the US adoption of the ISO 2240 standard. On an international level, the ASA system was superseded by the ISO film speed system between 1982 and 1987, however, the arithmetic ASA speed scale continued to live on as the linear speed value of the ISO system.


GOST

(Cyrillic: ) was an arithmetic film speed scale defined in GOST 2817-45 and GOST 2817–50. It was used in the former
Soviet Union The Soviet Union,. officially the Union of Soviet Socialist Republics. (USSR),. was a List of former transcontinental countries#Since 1700, transcontinental country that spanned much of Eurasia from 1922 to 1991. A flagship communist state, ...
since October 1951, replacing Hurter & Driffield (H&D, Cyrillic: ХиД) numbers, which had been used since 1928. GOST 2817-50 was similar to the ASA standard, having been based on a speed point at a density 0.2 above base plus fog, as opposed to the ASA's 0.1. GOST markings are only found on pre-1987 photographic equipment (film, cameras, lightmeters, etc.) of Soviet Union manufacture. On 1 January 1987, the GOST scale was realigned to the ISO scale with GOST 10691–84, This evolved into multiple parts including GOST 10691.6–88 and GOST 10691.5–88, which both became functional on 1 January 1991.


Current system: ISO

The ASA and DIN film speed standards have been combined into the ISO standards since 1974. The current
International Standard An international standard is a technical standard developed by one or more international standards organization, standards organizations. International standards are available for consideration and use worldwide. The most prominent such organizatio ...
for measuring the speed of colour negative film is ISO 5800:2001 (first published in 1979, revised in November 1987) from the
International Organization for Standardization The International Organization for Standardization (ISO ) is an international standard development organization composed of representatives from the national standards organizations of member countries. Membership requirements are given in Art ...
(ISO). Related standards ISO 6:1993 (first published in 1974) and ISO 2240:2003 (first published in July 1982, revised in September 1994 and corrected in October 2003) define scales for speeds of black-and-white negative film and colour reversal film, respectively. The determination of ISO speeds with digital still-cameras is described in ISO 12232:2019 (first published in August 1998, revised in April 2006, corrected in October 2006 and again revised in February 2019). The ISO system defines both an
arithmetic Arithmetic () is an elementary part of mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their chang ...
and a
logarithmic scale A logarithmic scale (or log scale) is a way of displaying numerical data over a very wide range of values in a compact way—typically the largest numbers in the data are hundreds or even thousands of times larger than the smallest numbers. Such a ...
. The arithmetic ISO scale corresponds to the arithmetic ASA system, where a doubling of film sensitivity is represented by a doubling of the numerical film speed value. In the logarithmic ISO scale, which corresponds to the DIN scale, adding 3° to the numerical value constitutes a doubling of sensitivity. For example, a film rated ISO 200/24° is twice as sensitive as one rated ISO 100/21°. Commonly, the logarithmic speed is omitted; for example, "ISO 100" denotes "ISO 100/21°", while logarithmic ISO speeds are written as "ISO 21°" as per the standard.


Conversion between current scales

Conversion from arithmetic speed ''S'' to logarithmic speed ''S''° is given by :S^\circ = 10 \log S + 1 and rounding to the nearest integer; the log is base 10. Conversion from logarithmic speed to arithmetic speed is given by :S = 10^ and rounding to the nearest standard arithmetic speed in Table 1 below. Table notes: # Speeds shown in bold under APEX, ISO and ASA are values actually assigned in speed standards from the respective agencies; other values are calculated extensions to assigned speeds using the same progressions as for the assigned speeds. # APEX ''Sv'' values 1 to 10 correspond with logarithmic ASA grades 1° to 10° found in ASA PH2.5-1960. # ASA arithmetic speeds from 4 to 5 are taken from ANSI PH2.21-1979 (Table 1, p. 8). # ASA arithmetic speeds from 6 to 3200 are taken from ANSI PH2.5-1979 (Table 1, p. 5) and ANSI PH2.27-1979. # ISO arithmetic speeds from 4 to 3200 are taken from ISO 5800:1987 (Table "ISO speed scales", p. 4). # ISO arithmetic speeds from 6 to 10000 are taken from ISO 12232:1998 (Table 1, p. 9). # ISO 12232:1998 does not specify speeds greater than 10000. However, the upper limit for ''S''noise 10000 was given as 12500, suggesting that ISO may have envisioned a progression of 12500, 25000, 50000, and 100000, similar to that from 1250 to 10000. This was consistent with ASA PH2.12-1961. For digital cameras, Nikon, Canon, Sony, Pentax, and Fujifilm chose to express the greater speeds in an exact power-of-2 progression from the highest previously realized speed (6400) rather than rounding to an extension of the existing progression. Speed ratings greater than 10000 have finally been defined in ISO 12232:2019. # Most of the modern 35 mm film SLRs support an automatic film speed range from ISO 25/15° to 5000/38° with DX-coded films, or ISO 6/9° to 6400/39° manually (without utilizing exposure compensation). The film speed range with support for TTL flash is smaller, typically ISO 12/12° to 3200/36° or less. # The Booster accessory for the Canon Pellix QL (1965) and Canon FT QL (1966) supported film speeds from 25 to 12800 ASA. # The film speed dial of the Canon A-1 (1978) supported a speed range from 6 to 12800 ASA (but already called ISO film speeds in the manual). On this camera exposure compensation and extreme film speeds were mutually exclusive. # The Leica R8 (1996) and R9 (2002) officially supported film speeds of 8000/40°, 10000/41° and 12800/42° (in the case of the R8) or 12500/42° (in the case of the R9), and utilizing its ±3 EV exposure compensation the range could be extended from ISO 0.8/0° to ISO 100000/51° in half exposure steps. # Digital camera manufacturers' arithmetic speeds from 12800 to 409600 are from specifications by Nikon (12800, 25600, 51200, 102400 in 2009, 204800 in 2012, 409600 in 2014), Canon (12800, 25600, 51200, 102400 in 2009, 204800 in 2011, 4000000 in 2015), Sony (12800 in 2009, 25600 in 2010, 409600 in 2014), Pentax (12800, 25600, 51200 in 2010, 102400, 204800 in 2014) and Fujifilm (12800 in 2011).


Historic ASA and DIN conversion

As discussed in the ASA and DIN sections, the definition of the ASA and DIN scales changed several times in the 1950s up into the early 1960s making it necessary to convert between the different scales. Since the ISO system combines the newer ASA and DIN definitions, this conversion is also necessary when comparing older ASA and DIN scales with the ISO scale. The picture shows an ASA/DIN conversion in a 1952 photography book in which 21/10° DIN was converted to ASA 80 instead of ASA 100. Some classic camera's exposure guides show the old conversion as they were valid at the time of production, for example the exposure guide of the classic camera Tessina (since 1957), where 21/10° DIN is related to ASA 80, 18° DIN to ASA 40, etc. Users of classic cameras, who do not know the historic background, may be confused.


Determining film speed

Film speed is found from a plot of optical density vs. log of exposure for the film, known as the ''D''–log ''H'' curve or Hurter–Driffield curve. There typically are five regions in the curve: the base + fog, the toe, the linear region, the shoulder, and the overexposed region. For
black-and-white Black-and-white (B&W or B/W) images combine black and white in a continuous spectrum, producing a grayscale, range of shades of gray, shades of grey. Media The history of various visual media began with black and white, and as technology imp ...
negative film, the "speed point" m is the point on the curve where density exceeds the base + fog density by 0.1 when the negative is developed so that a point n where the log of exposure is 1.3 units greater than the exposure at point m has a density 0.8 greater than the density at point m. The exposure ''H''m, in lux-s, is that for point m when the specified contrast condition is satisfied. The ISO arithmetic speed is determined from: :S = \frac This value is then rounded to the nearest standard speed in Table 1 of ISO 6:1993. Determining speed for color negative film is similar in concept but more complex because it involves separate curves for blue, green, and red. The film is processed according to the film manufacturer's recommendations rather than to a specified contrast. ISO speed for
color reversal film In photography, reversal film or slide film is a type of photographic film that produces a Positive (photography), positive image on a Transparency (optics), transparent base. Instead of negative (photography), negatives and photographic printin ...
is determined from the middle rather than the threshold of the curve; it again involves separate curves for blue, green, and red, and the film is processed according to the film manufacturer's recommendations.


Applying film speed

Film speed is used in the exposure equations to find the appropriate exposure parameters. Four variables are available to the photographer to obtain the desired effect:
lighting Lighting or illumination is the deliberate use of light to achieve practical or aesthetic effects. Lighting includes the use of both artificial light sources like lamps and light fixtures, as well as natural illumination by capturing dayligh ...
, film speed,
f-number In optics, the f-number of an optical system such as a camera lens is the ratio of the system's focal length to the diameter of the entrance pupil ("clear aperture").Smith, Warren ''Modern Optical Engineering'', 4th Ed., 2007 McGraw-Hill Pro ...
(aperture size), and
shutter speed In photography, shutter speed or exposure time is the length of time that the film or digital sensor inside the camera is exposed to light (that is, when the camera's shutter (photography), shutter is open) when taking a photograph. The am ...
(exposure time). The equation may be expressed as ratios, or, by taking the logarithm (base 2) of both sides, by addition, using the APEX system, in which every increment of 1 is a doubling of exposure; this increment is commonly known as a "stop". The effective f-number is proportional to the ratio between the lens
focal length The focal length of an Optics, optical system is a measure of how strongly the system converges or diverges light; it is the Multiplicative inverse, inverse of the system's optical power. A positive focal length indicates that a system Converge ...
and
aperture In optics, an aperture is a hole or an opening through which light travels. More specifically, the aperture and focal length of an optical system determine the cone angle of a bundle of ray (optics), rays that come to a focus (optics), focus ...
diameter, the diameter itself being proportional to the square root of the aperture area. Thus, a lens set to allows twice as much light to strike the focal plane as a lens set to 2. Therefore, each f-number factor of the square root of two (approximately 1.4) is also a stop, so lenses are typically marked in that progression: 1.4, 2, 2.8, 4, 5.6, 8, 11, 16, 22, 32, etc. The ISO arithmetic speed has a useful property for photographers without the equipment for taking a metered light reading. Correct exposure will usually be achieved for a frontlighted scene in bright sun if the aperture of the lens is set to f/16 and the shutter speed is the reciprocal of the ISO film speed (e.g. 1/100 second for 100 ISO film). This known as the
sunny 16 rule In photography, the sunny 16 rule (also known as the sunny rule) is a method of estimating correct daylight exposures without a light meter A light meter is a device used to measure the amount of light. In photography, a light meter (more c ...
.


Exposure index

Exposure index, or EI, refers to speed rating assigned to a particular film and shooting situation in variance to the film's actual speed. It is used to compensate for equipment calibration inaccuracies or process variables, or to achieve certain effects. The exposure index may simply be called the ''speed setting'', as compared to the speed ''rating''. For example, a photographer may rate an ISO 400 film at EI 800 and then use push processing to obtain printable negatives in low-light conditions. The film has been exposed at EI 800. Another example occurs where a camera's shutter is miscalibrated and consistently overexposes or underexposes the film; similarly, a
light meter A light meter is a device used to measure the amount of light. In photography, a light meter (more correctly an exposure meter) is used to determine the proper exposure (photography), exposure for a photograph. The meter will include either a Di ...
may be inaccurate. One may adjust the EI setting accordingly in order to compensate for these defects and consistently produce correctly exposed negatives.


Reciprocity

Upon exposure, the amount of light energy that reaches the film determines the effect upon the emulsion. If the brightness of the light is multiplied by a factor and the exposure of the film decreased by the same factor by varying the camera's
shutter speed In photography, shutter speed or exposure time is the length of time that the film or digital sensor inside the camera is exposed to light (that is, when the camera's shutter (photography), shutter is open) when taking a photograph. The am ...
and aperture, so that the energy received is the same, the film will be developed to the same density. This rule is called reciprocity. The systems for determining the sensitivity for an emulsion are possible because reciprocity holds over a wide range of customary conditions. In practice, reciprocity works reasonably well for normal photographic films for the range of exposures between 1/1000 second to 1/2 second. However, this relationship breaks down outside these limits, a phenomenon known as reciprocity failure.


Film sensitivity and grain

The size of
silver halide A silver halide (or silver salt) is one of the chemical compounds that can form between the Chemical element, element silver (Ag) and one of the halogens. In particular, bromine (Br), chlorine (Cl), iodine (I) and fluorine (F) may each combine wi ...
grains in the
emulsion An emulsion is a mixture of two or more liquids that are normally Miscibility, immiscible (unmixable or unblendable) owing to liquid-liquid phase separation. Emulsions are part of a more general class of two-phase systems of matter called colloi ...
affects film sensitivity, which is related to
granularity Granularity (also called graininess), the condition of existing in granular material, granules or Grain, grains, refers to the extent to which a material or system is composed of distinction (philosophy), distinguishable pieces. It can either re ...
because larger grains give film greater sensitivity to light. Fine-grain film, such as film designed for portraiture or copying original camera negatives, is relatively insensitive, or "slow", because it requires brighter light or a longer exposure than a "fast" film. Fast films, used for photographing in low light or capturing high-speed motion, produce comparatively grainy images.
Kodak The Eastman Kodak Company (referred to simply as Kodak ) is an American public company that produces various products related to its historic basis in analogue photography. The company is headquartered in Rochester, New York, and is incorpor ...
has defined a "Print Grain Index" (PGI) to characterize film grain (color negative films only), based on perceptual
just-noticeable difference In the branch of experimental psychology focused on sense, sensation (psychology), sensation, and perception, which is called psychophysics, a just-noticeable difference or JND is the amount something must be changed in order for a difference to be ...
of graininess in prints. They also define "granularity", a measurement of grain using an RMS measurement of density fluctuations in uniformly exposed film, measured with a microdensitometer with 48 micrometre aperture. Granularity varies with exposure — underexposed film looks grainier than overexposed film.


Marketing anomalies

Some high-speed black-and-white films, such as Ilford Delta 3200, P3200 T-Max, and T-MAX P3200 are marketed with film speeds in excess of their true ISO speed as determined using the ISO testing method. According to the respective data sheets, the Ilford product is actually an ISO 1000 film, while the Kodak film's speed is nominally 800 to 1000 ISO. The manufacturers do not indicate that the 3200 number is an ISO rating on their packaging. Kodak and Fuji also marketed E6 films designed for pushing (hence the "P" prefix), such as Ektachrome P800/1600 and Fujichrome P1600, both with a base speed of ISO 400. The DX codes on the film cartridges indicate the marketed film speed (i.e. 3200), not the ISO speed, in order to automate shooting and development.


Digital camera ISO speed and exposure index

In digital camera systems, an arbitrary relationship between exposure and sensor data values can be achieved by setting the signal gain of the sensor. The relationship between the sensor data values and the lightness of the finished image is also arbitrary, depending on the parameters chosen for the interpretation of the sensor data into an image
color space A color space is a specific organization of colors. In combination with color profiling supported by various physical devices, it supports reproducible representations of colorwhether such representation entails an analog signal, analog or a Dig ...
such as
sRGB sRGB is a standard RGB color space, RGB (red, green, blue) color space that Hewlett-Packard, HP and Microsoft created cooperatively in 1996 to use on monitors, printers, and the World Wide Web. It was subsequently standardized by the Internation ...
. For digital photo cameras ("digital still cameras"), an exposure index (EI) rating—commonly called ''ISO'' setting—is specified by the manufacturer such that the sRGB image files produced by the camera will have a lightness similar to what would be obtained with film of the same EI rating at the same exposure. The usual design is that the camera's parameters for interpreting the sensor data values into sRGB values are fixed, and a number of different EI choices are accommodated by varying the sensor's signal gain in the analog realm, prior to conversion to digital. Some camera designs provide at least some EI choices by adjusting the sensor's signal gain in the digital realm ("expanded ISO"). A few camera designs also provide EI adjustment through a choice of lightness parameters for the interpretation of sensor data values into sRGB; this variation allows different tradeoffs between the range of highlights that can be captured and the amount of noise introduced into the shadow areas of the photo. Digital cameras have far surpassed film in terms of sensitivity to light, with ISO equivalent speeds of up to 4,560,000, a number that is unfathomable in the realm of conventional film photography. Faster processors, as well as advances in software noise reduction techniques allow this type of processing to be executed the moment the photo is captured, allowing photographers to store images that have a higher level of refinement and would have been prohibitively time-consuming to process with earlier generations of digital camera hardware.


The ISO (International Organization of Standards) 12232:2019 standard

The ISO standard ISO 12232:2006 gave digital still camera manufacturers a choice of five different techniques for determining the exposure index rating at each sensitivity setting provided by a particular camera model. Three of the techniques in ISO 12232:2006 were carried over from the 1998 version of the standard, while two new techniques allowing for measurement of JPEG output files were introduced from CIPA DC-004. Depending on the technique selected, the exposure index rating could depend on the sensor sensitivity, the sensor noise, and the appearance of the resulting image. The standard specified the measurement of light sensitivity of the entire digital camera system and not of individual components such as digital sensors, although Kodak has reported using a variation to characterize the sensitivity of two of their sensors in 2001. The ''Recommended Exposure Index'' (REI) technique, new in the 2006 version of the standard, allows the manufacturer to specify a camera model's EI choices arbitrarily. The choices are based solely on the manufacturer's opinion of what EI values produce well-exposed
sRGB sRGB is a standard RGB color space, RGB (red, green, blue) color space that Hewlett-Packard, HP and Microsoft created cooperatively in 1996 to use on monitors, printers, and the World Wide Web. It was subsequently standardized by the Internation ...
images at the various sensor sensitivity settings. This is the only technique available under the standard for output formats that are not in the sRGB color space. This is also the only technique available under the standard when multi-zone metering (also called ''pattern'' metering) is used. The ''Standard Output Sensitivity'' (SOS) technique, also new in the 2006 version of the standard, effectively specifies that the average level in the sRGB image must be 18% gray plus or minus 1/3 stop when the exposure is controlled by an automatic exposure control system calibrated per ISO 2721 and set to the EI with no exposure compensation. Because the output level is measured in the sRGB output from the camera, it is only applicable to sRGB
JPEG JPEG ( ) is a commonly used method of lossy compression for digital images, particularly for those images produced by digital photography. The degree of compression can be adjusted, allowing a selectable tradeoff between storage size and image ...
—and not to output files in
raw image format A camera raw image file contains unprocessed or minimally processed data from the image sensor of either a digital camera, a motion picture film scanner, or other image scanner. Raw files are named so because they are not yet processed and the ...
. It is not applicable when multi-zone metering is used. The CIPA DC-004 standard requires that Japanese manufacturers of digital still cameras use either the REI or SOS techniques, and DC-008 updates the
Exif Exchangeable image file format (officially Exif, according to JEIDA/JEITA/CIPA specifications) is a standard that specifies file format, formats for images, sound, and ancillary tags used by digital cameras (including smartphones), Image scanner ...
specification to differentiate between these values. Consequently, the three EI techniques carried over from ISO 12232:1998 are not widely used in recent camera models (approximately 2007 and later). As those earlier techniques did not allow for measurement from images produced with
lossy compression In information technology, lossy compression or irreversible compression is the class of data compression methods that uses inexact approximations and partial data discarding to represent the content. These techniques are used to reduce data size ...
, they cannot be used at all on cameras that produce images only in JPEG format. The ''saturation-based'' (SAT or Ssat) technique is closely related to the SOS technique, with the sRGB output level being measured at 100% white rather than 18% gray. The SOS value is effectively 0.704 times the saturation-based value. Because the output level is measured in the
sRGB sRGB is a standard RGB color space, RGB (red, green, blue) color space that Hewlett-Packard, HP and Microsoft created cooperatively in 1996 to use on monitors, printers, and the World Wide Web. It was subsequently standardized by the Internation ...
output from the camera, it is only applicable to sRGB images—typically
TIFF Tag Image File Format, abbreviated TIFF or TIF, is an image file format for storing raster graphics images, popular among graphic artists, the publishing industry, and photographers. TIFF is widely supported by image scanner, scanning, FAX, faxi ...
—and not to output files in raw image format. It is not applicable when multi-zone metering is used. The two ''noise-based'' techniques have rarely been used for consumer digital still cameras. These techniques specify the highest EI that can be used while still providing either an "excellent" picture or a "usable" picture depending on the technique chosen. An update to this standard has been published as ISO 12232:2019, defining a wider range of ISO speeds.


Measurements and calculations

ISO speed ratings of a digital camera are based on the properties of the sensor and the image processing done in the camera, and are expressed in terms of the luminous exposure ''H'' (in lux
second The second (symbol: s) is the unit of Time in physics, time in the International System of Units (SI), historically defined as of a day – this factor derived from the division of the day first into 24 hours, then to 60 minutes and finally t ...
s) arriving at the sensor. For a typical camera lens with an effective
focal length The focal length of an Optics, optical system is a measure of how strongly the system converges or diverges light; it is the Multiplicative inverse, inverse of the system's optical power. A positive focal length indicates that a system Converge ...
''f'' that is much smaller than the distance between the camera and the photographed scene, ''H'' is given by :H = \frac, where ''L'' is the
luminance Luminance is a Photometry (optics), photometric measure of the luminous intensity per units of measurement, unit area of light travelling in a given direction. It describes the amount of light that passes through, is emitted from, or is reflecte ...
of the scene (in
candela The candela ( or ; symbol: cd) is the unit of luminous intensity in the International System of Units (SI). It measures luminous power per unit solid angle emitted by a light source in a particular direction. Luminous intensity is analogous to ...
per m²), ''t'' is the exposure time (in seconds), ''N'' is the aperture f-number, and :q = \frac T\, v(\theta)\, \cos^4\theta is a factor depending on the
transmittance Transmittance of the surface of a material is its effectiveness in transmitting radiant energy. It is the fraction of incident electromagnetic power that is transmitted through a sample, in contrast to the transmission coefficient, which is th ...
''T'' of the lens, the
vignetting In photography Photography is the visual art, art, application, and practice of creating durable images by recording light, either electronically by means of an image sensor, or chemically by means of a light-sensitive material such as ph ...
factor ''v''(''θ''), and the angle ''θ'' relative to the axis of the lens. A typical value is ''q'' = 0.65, based on ''θ'' = 10°, ''T'' = 0.9, and ''v'' = 0.98.


Saturation-based speed

The ''saturation-based speed'' is defined as :S_ = \frac, where H_ is the maximum possible exposure that does not lead to a clipped or bloomed camera output. Typically, the lower limit of the saturation speed is determined by the sensor itself, but with the gain of the amplifier between the sensor and the
analog-to-digital converter In electronics, an analog-to-digital converter (ADC, A/D, or A-to-D) is a system that converts an analog signal, such as a sound picked up by a microphone or light entering a digital camera, into a Digital signal (signal processing), digi ...
, the saturation speed can be increased. The factor 78 is chosen such that exposure settings based on a standard
light meter A light meter is a device used to measure the amount of light. In photography, a light meter (more correctly an exposure meter) is used to determine the proper exposure (photography), exposure for a photograph. The meter will include either a Di ...
and an 18-percent reflective surface will result in an image with a grey level of 18%/ = 12.7% of saturation. The factor indicates that there is half a stop of headroom to deal with
specular reflection Specular reflection, or regular reflection, is the mirror-like reflection (physics), reflection of waves, such as light, from a surface. The law of reflection states that a reflected ray (optics), ray of light emerges from the reflecting sur ...
s that would appear brighter than a 100% reflecting diffuse white surface.


Noise-based speed

The ''noise-based speed'' is defined as the exposure that will lead to a given
signal-to-noise ratio Signal-to-noise ratio (SNR or S/N) is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to the noise power, often expressed in ...
on individual
pixel In digital imaging, a pixel (abbreviated px), pel, or picture element is the smallest addressable element in a Raster graphics, raster image, or the smallest point in an all points addressable display device. In most digital display devices, pi ...
s. Two ratios are used, the 40:1 ("excellent image quality") and the 10:1 ("acceptable image quality") ratio. These ratios have been subjectively determined based on a resolution of 70 pixels per cm (178 DPI) when viewed at 25 cm (9.8 inch) distance. The noise is defined as the
standard deviation In statistics, the standard Deviation (statistics), deviation is a measure of the amount of variation or statistical dispersion, dispersion of a set of values. A low standard deviation indicates that the values tend to be close to the mean (al ...
of a weighted average of the
luminance Luminance is a Photometry (optics), photometric measure of the luminous intensity per units of measurement, unit area of light travelling in a given direction. It describes the amount of light that passes through, is emitted from, or is reflecte ...
and color of individual pixels. The noise-based speed is mostly determined by the properties of the sensor and somewhat affected by the noise in the electronic gain and AD converter.


Standard output sensitivity (SOS)

In addition to the above speed ratings, the standard also defines the ''standard output sensitivity'' (SOS), how the exposure is related to the digital pixel values in the output image. It is defined as :S_ = \frac, where H_ is the exposure that will lead to values of 118 in 8-bit pixels, which is 18 percent of the saturation value in images encoded as
sRGB sRGB is a standard RGB color space, RGB (red, green, blue) color space that Hewlett-Packard, HP and Microsoft created cooperatively in 1996 to use on monitors, printers, and the World Wide Web. It was subsequently standardized by the Internation ...
or with
gamma Gamma (uppercase , lowercase ; ''gámma'') is the third letter of the Greek alphabet The Greek alphabet has been used to write the Greek language since the late 9th or early 8th century BCE. It is derived from the earlier Phoenician a ...
 = 2.2.


Discussion

The standard specifies how speed ratings should be reported by the camera. If the noise-based speed (40:1) is ''higher'' than the saturation-based speed, the noise-based speed should be reported, rounded ''downwards'' to a standard value (e.g. 200, 250, 320, or 400). The rationale is that exposure according to the lower saturation-based speed would not result in a visibly better image. In addition, an exposure latitude can be specified, ranging from the saturation-based speed to the 10:1 noise-based speed. If the noise-based speed (40:1) is ''lower'' than the saturation-based speed, or undefined because of high noise, the saturation-based speed is specified, rounded upwards to a standard value, because using the noise-based speed would lead to overexposed images. The camera may also report the SOS-based speed (explicitly as being an SOS speed), rounded to the nearest standard speed rating. For example, a camera sensor may have the following properties: S_=107, S_=1688, and S_=49. According to the standard, the camera should report its sensitivity as :''ISO 100 (daylight)'' :''ISO speed latitude 50–1600'' :''ISO 100 (SOS, daylight)''. The SOS rating could be user controlled. For a different camera with a noisier sensor, the properties might be S_=40, S_=800, and S_=200. In this case, the camera should report :''ISO 200 (daylight)'', as well as a user-adjustable SOS value. In all cases, the camera should indicate for the white balance setting for which the speed rating applies, such as daylight or tungsten (
incandescent light An incandescent light bulb, incandescent lamp or incandescent light globe is an electric light An electric light, lamp, or light bulb is an electrical component that produces light. It is the most common form of artificial lighting. ...
). Despite these detailed standard definitions, cameras typically do not clearly indicate whether the user "ISO" setting refers to the noise-based speed, saturation-based speed, or the specified output sensitivity, or even some made-up number for marketing purposes. Because the 1998 version of ISO 12232 did not permit measurement of camera output that had lossy compression, it was not possible to correctly apply any of those measurements to cameras that did not produce
sRGB sRGB is a standard RGB color space, RGB (red, green, blue) color space that Hewlett-Packard, HP and Microsoft created cooperatively in 1996 to use on monitors, printers, and the World Wide Web. It was subsequently standardized by the Internation ...
files in an uncompressed format such as
TIFF Tag Image File Format, abbreviated TIFF or TIF, is an image file format for storing raster graphics images, popular among graphic artists, the publishing industry, and photographers. TIFF is widely supported by image scanner, scanning, FAX, faxi ...
. Following the publication of CIPA DC-004 in 2006, Japanese manufacturers of digital still cameras are required to specify whether a sensitivity rating is REI or SOS. A greater SOS setting for a given sensor comes with some loss of image quality, just like with analog film. However, this loss is visible as image noise rather than
grain A grain is a small, hard, dry fruit (caryopsis) – with or without an attached husk, hull layer – harvested for human or animal consumption. A grain crop is a grain-producing plant. The two main types of commercial grain crops are cereals and l ...
. APS- and 35 mm-sized digital
image sensors An image sensor or imager is a sensor that detects and conveys information used to make an image. It does so by converting the variable attenuation of light waves (as they refraction, pass through or reflection (physics), reflect off objects) in ...
, both CMOS and CCD based, do not produce significant noise until about ''ISO 1600''.


See also

*
Frame rate Frame rate (expressed in or FPS) is the frequency (rate) at which consecutive images (Film frame, frames) are captured or displayed. The term applies equally to film and video cameras, computer graphics, and motion capture systems. Frame rate ma ...
*
Lens speed Lens speed refers to the maximum aperture diameter, or minimum f-number, of a photographic lens. A lens with a larger than average maximum aperture (that is, a smaller minimum f-number) is called a "fast lens" because it can achieve the same exposu ...
* Preferred number


References

}


Further reading


ISO 6:1974
(1993-02). ''Photography — Black-and-white pictorial still camera negative film/process systems — Determination of ISO speed''. Geneva: International Organization for Standardization.

(1982-07)

(1994-09)

(2003–10). ''Photography — Colour reversal camera films — Determination of ISO speed''. Geneva: International Organization for Standardization.

''General Purpose Photographic Exposure Meters (Photoelectric Type) — Guide to Product Specification''. Geneva: International Organization for Standardization.
ISO 5800:1987
(1987-11)

(2001-06). ''Photography — Colour negative films for still photography — Determination of ISO speed''. Geneva: International Organization for Standardization.

(1998-08)

(2006-04-15), ISO 12232:2006 (2006-10-01)
ISO 12232:2019
(2019-02-01). ''Photography — Digital still cameras — Determination of exposure index, ISO speed ratings, standard output sensitivity, and recommended exposure index''. Geneva: International Organization for Standardization. * ASA Z38.2.1-1943, ASA Z38.2.1-1946, ASA Z38.2.1-1947 (1947-07-15). ''American Standard Method for Determining Photographic Speed and Speed Number''. New York: American Standards Association. Superseded by ASA PH2.5-1954. * ASA PH2.5-1954, ASA PH2.5-1960. ''American Standard Method for Determining Speed of photographic Negative Materials (Monochrome, Continuous Tone)''. New York: United States of America Standards Institute (USASI). Superseded by ANSI PH2.5-1972. * ANSI PH2.5-1972, ANSI PH2.5-1979 (1979-01-01), ANSI PH2.5-1979(R1986). ''Speed of photographic negative materials (monochrome, continuous tone, method for determining)''. New York: American National Standards Institute. Superseded by NAPM IT2.5-1986. * NAPM IT2.5-1986
ANSI/ISO 6-1993 ANSI/NAPM IT2.5-1993
(1993-01-01). ''Photography — Black-and-White Pictorial Still Camera Negative Film/Process Systems — Determination of ISO Speed (same as ANSI/ISO 6-1993)''. National Association of Photographic Manufacturers. This represents the US adoption of ISO 6. * ASA PH2.12-1957, ASA PH2.12-1961. ''American Standard, General-Purpose Photographic Exposure Meters (photoelectric type)''. New York: American Standards Association. Superseded by ANSI PH3.49-1971. * ANSI PH2.21-1983 (1983-09-23), ANSI PH2.21-1983(R1989). ''Photography (Sensitometry) Color reversal camera films – Determination of ISO speed''. New York: American Standards Association. Superseded by ANSI/ISO 2240-1994 ANSI/NAPM IT2.21-1994. * ANSI/ISO 2240-1994 ANSI/NAPM IT2.21-1994. ''Photography – Colour reversal camera films – determination of ISO speed''. New York: American National Standards Institute. This represents the US adoption of ISO 2240. * ASA PH2.27-1965 (1965-07-06), ASA PH2.27-1971, ASA PH2.27-1976, ANSI PH2.27-1979, ANSI PH2.27-1981, ANSI PH2.27-1988 (1988-08-04). ''Photography – Colour negative films for still photography – Determination of ISO speed (withdrawn)''. New York: American Standards Association. Superseded by ANSI IT2.27-1988. * ANSI IT2.27-1988 (1994-08/09?). ''Photography Color negative films for still photography – Determination of ISO speed''. New York: American National Standards Institute. Withdrawn. This represented the US adoption of ISO 5800. * ANSI PH3.49-1971, ANSI PH3.49-1971(R1987). ''American National Standard for general-purpose photographic exposure meters (photoelectric type)''. New York: American National Standards Institute. After several revisions, this standard was withdrawn in favor of ANSI/ISO 2720:1974. * ANSI/ISO 2720:1974, ANSI/ISO 2720:1974(R1994) ANSI/NAPM IT3.302-1994. ''General Purpose Photographic Exposure Meters (Photoelectric Type) — Guide to Product Specification''. New York: American National Standards Institute. This represents the US adoption of ISO 2720. * BSI BS 1380:1947, BSI BS 1380:1963. ''Speed and exposure index''. British Standards Institution. Superseded by BSI BS 1380-1:1973 (1973-12), BSI BS 1380-2:1984 (1984-09), BSI BS 1380-3:1980 (1980-04) and others.
BSI BS 1380-1:1973
(1973-12-31). ''Speed of sensitized photographic materials: Negative monochrome material for still and cine photography''. British Standards Institution. Replaced by BSI BS ISO 6:1993, superseded by BSI BS ISO 2240:1994.
BSI BS 1380-2:1984 ISO 2240:1982
(1984-09-28). ''Speed of sensitized photographic materials. Method for determining the speed of colour reversal film for still and amateur cine photography''. British Standards Institution. Superseded by BSI BS ISO 2240:1994.
BSI BS 1380-3:1980 ISO 5800:1979
(1980-04-30). ''Speed of sensitized photographic materials. Colour negative film for still photography''. British Standards Institution. Superseded by BSI BS ISO 5800:1987.
BSI BS ISO 6:1993
(1995-03-15). ''Photography. Black-and-white pictorial still camera negative film/process systems. Determination of ISO speed''. British Standards Institution. This represents the British adoption of ISO 6:1993.
BSI BS ISO 2240:1994
(1993-03-15)
BSI BS ISO 2240:2003
(2004-02-11). ''Photography. Colour reversal camera films. Determination of ISO speed''. British Standards Institution. This represents the British adoption of ISO 2240:2003.
BSI BS ISO 5800:1987
(1995-03-15). ''Photography. Colour negative films for still photography. Determination of ISO speed''. British Standards Institution. This represents the British adoption of ISO 5800:1987. * DIN 4512:1934-01, DIN 4512:1957-11 (Blatt 1), DIN 4512:1961-10 (Blatt 1). ''Photographische Sensitometrie, Bestimmung der optischen Dichte''. Berlin: Deutscher Normenausschuß (DNA). Superseded by DIN 4512-1:1971-04, DIN 4512-4:1977-06, DIN 4512-5:1977-10 and others.

''Photographic sensitometry; systems of black and white negative films and their process for pictorial photography; determination of speed''. Berlin: Deutsches Institut für Normung (before 1975: Deutscher Normenausschuß (DNA)). Superseded by DIN ISO 6:1996-02.

''Photographic sensitometry; determination of the speed of colour reversal films''. Berlin: Deutsches Institut für Normung. Superseded by DIN ISO 2240:1998-06.

''Photographic sensitometry; determination of the speed of colour negative films''. Berlin: Deutsches Institut für Normung. Superseded by DIN ISO 5800:1998-06.

''Photography – Black-and-white pictorial still camera negative film/process systems – Determination of ISO speed (ISO 6:1993)''. Berlin: Deutsches Institut für Normung. This represents the German adoption of ISO 6:1993.

''Photography – Colour reversal camera films – Determination of ISO speed (ISO 2240:2003)''. Berlin: Deutsches Institut für Normung. This represents the German adoption of ISO 2240:2003.

''Photography – Colour negative films for still photography – Determination of ISO speed (ISO 5800:1987 + Corr. 1:2001)''. Berlin: Deutsches Institut für Normung. This represents the German adoption of ISO 5800:2001. * Leslie B. Stroebel, John Compton, Ira Current, Richard B. Zakia. ''Basic Photographic Materials and Processes'', second edition. Boston: Focal Press, 2000. .


External links



Digital Photography FAQ

{{DEFAULTSORT:Film Speed Science of photography Physical quantities