HOME

TheInfoList



OR:

Electrical impedance tomography (EIT) is a
noninvasive Minimally invasive procedures (also known as minimally invasive surgeries) encompass surgical techniques that limit the size of incisions needed, thereby reducing wound healing time, associated pain, and risk of infection. Surgery by definiti ...
type of
medical imaging Medical imaging is the technique and process of imaging the interior of a body for clinical analysis and medical intervention, as well as visual representation of the function of some organs or tissues (physiology). Medical imaging seeks to re ...
in which the electrical
conductivity Conductivity may refer to: *Electrical conductivity, a measure of a material's ability to conduct an electric current **Conductivity (electrolytic), the electrical conductivity of an electrolyte in solution ** Ionic conductivity (solid state), ele ...
,
permittivity In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter ''ε'' (epsilon), is a measure of the electric polarizability of a dielectric. A material with high permittivity polarizes more in ...
, and impedance of a part of the body is inferred from surface
electrode An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or air). Electrodes are essential parts of batteries that can consist of a variety of materials ...
measurements and used to form a tomographic image of that part. Electrical conductivity varies considerably among various biological tissues (absolute EIT) or the movement of fluids and gases within tissues (difference EIT). The majority of EIT systems apply small alternating currents at a single frequency, however, some EIT systems use multiple frequencies to better differentiate between normal and suspected abnormal tissue within the same organ (multifrequency-EIT or electrical impedance spectroscopy). Typically, conducting surface electrodes are attached to the skin around the body part being examined. Small alternating currents will be applied to some or all of the electrodes, the resulting equi-potentials being recorded from the other electrodes (figures 1 and 2). This process will then be repeated for numerous different electrode configurations and finally result in a two-dimensional tomogram according to the image reconstruction algorithms incorporated. Since free ion content determines tissue and fluid conductivity, muscle and blood will conduct the applied currents better than fat, bone or lung tissue. This property can be used to reconstruct static images by morphological or absolute EIT (a-EIT). However, in contrast to linear x-rays used in Computed Tomography, electric currents travel three dimensionally along all the paths simultaneously, weighted by their
conductivity Conductivity may refer to: *Electrical conductivity, a measure of a material's ability to conduct an electric current **Conductivity (electrolytic), the electrical conductivity of an electrolyte in solution ** Ionic conductivity (solid state), ele ...
(thus primarily along the path of least resistivity, but not exclusively). This means, that a part of the electric current leaves the transverse plane and results in an impedance transfer. This and other factors are the reason why image reconstruction in absolute EIT is so hard, since there is usually more than just one solution for image reconstruction of a three-dimensional area projected onto a two-dimensional plane. Mathematically, the problem of recovering conductivity from surface measurements of current and potential is a
non-linear In mathematics and science, a nonlinear system is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other ...
inverse problem An inverse problem in science is the process of calculating from a set of observations the causal factors that produced them: for example, calculating an image in X-ray computed tomography, source reconstruction in acoustics, or calculating the ...
and is severely
ill-posed The mathematical term well-posed problem stems from a definition given by 20th-century French mathematician Jacques Hadamard. He believed that mathematical models of physical phenomena should have the properties that: # a solution exists, # the sol ...
. The mathematical formulation of the problem is due to
Alberto Calderón Alberto Pedro Calderón (September 14, 1920 – April 16, 1998) was an Argentinian mathematician. His name is associated with the University of Buenos Aires, but first and foremost with the University of Chicago, where Calderón and his mentor, t ...
, and in the mathematical literature of inverse problems it is often referred to as "Calderón's inverse problem" or the "Calderón problem". There is extensive mathematical research on the problem of uniqueness of solution and numerical algorithms for this problem. Compared to the tissue conductivities of most other soft tissues within the human thorax, lung tissue conductivity is approximately five-fold lower, resulting in high absolute contrast. This characteristic may partially explain the amount of research conducted in EIT lung imaging. Furthermore, lung conductivity fluctuates intensely during the breath cycle which accounts for the immense interest of the research community to use EIT as a bedside method to visualize inhomogeneity of lung ventilation in mechanically ventilated patients. EIT measurements between two or more physiological states, e.g. between inspiration and expiration, are therefore referred to as time difference EIT (td-EIT). Time difference EIT (td-EIT) has one major advantage over absolute EIT (a-EIT): inaccuracies resulting from interindividual anatomy, insufficient skin contact of surface electrodes or impedance transfer can be dismissed because most artifacts will eliminate themselves due to simple image subtraction in f-EIT. This is most likely the reason why, as of today, the greatest progress of EIT research has been achieved with difference EIT. Further EIT applications proposed include detection/location of
cancer Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal b ...
in
skin Skin is the layer of usually soft, flexible outer tissue covering the body of a vertebrate animal, with three main functions: protection, regulation, and sensation. Other animal coverings, such as the arthropod exoskeleton, have different ...
,
breast The breast is one of two prominences located on the upper ventral region of a primate's torso. Both females and males develop breasts from the same embryological tissues. In females, it serves as the mammary gland, which produces and sec ...
, or
cervix The cervix or cervix uteri (Latin, 'neck of the uterus') is the lower part of the uterus (womb) in the human female reproductive system. The cervix is usually 2 to 3 cm long (~1 inch) and roughly cylindrical in shape, which changes during ...
, localization of epileptic foci,Holder D.S., Electrical Impedance Tomography: Methods, History and Applications, Institute of Physics, 2004. . imaging of brain activity. as well as a diagnostic tool for impaired gastric emptying. Attempts to detect or localize tissue pathology within normal tissue usually rely on multifrequency EIT (MF-EIT), also termed Electrical Impedance Spectroscopy (EIS) and are based on differences in conductance patterns at varying frequencies.


History

The invention of EIT as a medical imaging technique is usually attributed to John G. Webster and a publication in 1978, although the first practical realization of a medical EIT system was detailed in 1984 due to the work of David C. Barber and Brian H. Brown. Together, Brown and Barber published the first Electrical Impedance Tomogram in 1983, visualizing the cross section of a human forearm by absolute EIT. Even though there has been substantial progress in the meantime, most a-EIT applications are still considered experimental. However, two commercial f-EIT devices for monitoring lung function in intensive care patients have been introduced just recently. A technique similar to EIT is used in
geophysics Geophysics () is a subject of natural science concerned with the physical processes and physical properties of the Earth and its surrounding space environment, and the use of quantitative methods for their analysis. The term ''geophysics'' so ...
and industrial process monitoring –
electrical resistivity tomography Electrical resistivity tomography (ERT) or electrical resistivity imaging (ERI) is a geophysical technique for imaging sub-surface structures from electrical resistivity measurements made at the surface, or by electrodes in one or more borehole ...
. In analogy to EIT, surface electrodes are being placed on the earth, within bore holes, or within a vessel or pipe in order to locate resistivity anomalies or monitor mixtures of conductive fluids. Setup and reconstruction techniques are comparable to EIT. In geophysics, the idea dates from the 1930s. Electrical resistivity tomography has also been proposed for mapping the electrical properties of substrates and thin films for electronic applications.


Theory

Electrical conductivity and permittivity vary among biological tissue types and depend on their free ion content. Further factors affecting conductivity include temperature and other physiological factors, e.g. the respiratory cycle between in- and expiration when lung tissue becomes more conductive due to lower content of insulating air within its alveoli. After positioning surface electrodes through adhesive electrodes, an electrode belt or a conductive electrode vest around the body part of interest, alternating currents of typically a few milliamperes at a frequency of 10–100 kHz will be applied across two or more drive electrodes. The remaining electrodes will be used to measure the resulting voltage. The procedure will then be repeated for numerous "stimulation patterns", e.g. successive pairs of adjacent electrodes until an entire circle has been completed and image reconstruction can be carried out and displayed by a digital workstation that incorporates complex mathematical algorithms and ''a priori'' data.Holder David S.: ''Electrical Impedance Tomography. Methods, History and Applications'', Institute of Physics: Bristol und Philadelphia 2005, ''Part 1 Algorithms'' The current itself is applied using
current source A current source is an electronic circuit that delivers or absorbs an electric current which is independent of the voltage across it. A current source is the dual of a voltage source. The term ''current sink'' is sometimes used for sources fed ...
s, either a single current source switched between electrodes using a
multiplexer In electronics, a multiplexer (or mux; spelled sometimes as multiplexor), also known as a data selector, is a device that selects between several analog or digital input signals and forwards the selected input to a single output line. The sel ...
or a system of voltage-to-current converters, one for each electrode, each controlled by a digital to analog converter. The measurements again may be taken either by a single voltage measurement circuit multiplexed over the electrodes or a separate circuit for each electrode. Earlier EIT systems still used an analog demodulation circuit to convert the alternating voltage to a direct current level before running it through an
analog-to-digital converter In electronics, an analog-to-digital converter (ADC, A/D, or A-to-D) is a system that converts an analog signal, such as a sound picked up by a microphone or light entering a digital camera, into a digital signal. An ADC may also provide ...
. Newer systems convert the alternating signal directly before performing digital demodulation. Depending on indication, some EIT systems are capable of working at multiple frequencies and measuring both magnitude and phase of the voltage. Voltages measured are passed on to a computer to perform image reconstruction and display. The choice of current (or voltage) patterns affects the signal-to-noise ratio significantly. With devices capable of feeding currents from all electrodes simultaneously (such as ACT3) it is possible to adaptively determine optimal current patterns. If images are to be displayed in real time a typical approach is the application of some form of regularized inverse of a linearization of the forward problem or a fast version of a direct reconstruction method such as the D-bar method. Most practical systems used in the medical environment generate a 'difference image', i.e. differences in voltage between two time points are left-multiplied by the regularized inverse to calculate an approximate difference between permittivity and conductivity images. Another approach is to construct a
finite element The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat t ...
model of the body and adjust the conductivities (for example using a variant of Levenburg–Marquart method) to fit the measured data. This is more challenging as it requires an accurate body shape and the exact position of the electrodes. Much of the fundamental work underpinning Electrical Impedance was done at Rensselaer Polytechnic Institute starting in the 1980s.Cheng, K. S., Isaacson, D., Newell, J. C., & Gisser, D. G. (1989). Electrode models for electric current computed tomography. Biomedical Engineering, IEEE Transactions on, 36(9), 918–24.Somersalo, E., Cheney, M., & Isaacson, D. (1992). Existence and uniqueness for electrode models for electric current computed tomography. SIAM Journal on Applied Mathematics, 52(4), 1023–1040.Cheney, M., & Isaacson, D. (1992). Distinguishability in impedance imaging. Biomedical Engineering, IEEE Transactions on, 39(8), 852–860. See also the work published in 1992 from the Glenfield Hospital Project (reference missing). Absolute EIT approaches are targeted at digital reconstruction of static images, i.e. two-dimensional representations of the anatomy within the body part of interest. As mentioned above and unlike linear x-rays in Computed Tomography, electric currents travel three-dimensionally along the path of least resistivity (figure 1), which results in partial loss of the electric current applied (impedance transfer, e.g. due to blood flow through the transverse plane). This is one of the reasons why image reconstruction in absolute EIT is so complex, since there is usually more than just one solution for image reconstruction of a three-dimensional area projected onto a two-dimensional plane. Another difficulty is that given the number of electrodes and the measurement precision at each electrode, only objects bigger than a given size can be distinguished.Alessandrini, G. (1988). Stable determination of conductivity by boundary measurements. Applicable Analysis, 27(1–3), 153–172. This explains the necessity of highly sophisticated mathematical algorithms that will address the inverse problem and its ill-posedness. Further difficulties in absolute EIT arise from inter- and intra-individual differences of electrode conductivity with associated image distortion and artifacts. It is also important to bear in mind that the body part of interest is rarely precisely rotund and that inter-individual anatomy varies, e.g. thorax shape, affecting individual electrode spacing.Boyle A., Adler A. (2011) "The impact of electrode area, contact impedance and boundary shape on EIT images." ''Physiol. Meas.'' 32(7): 745–54. ''A priori'' data accounting for age-, height- and gender-typical anatomy can reduce sensitivity to artifacts and image distortion.Ferrario D., Grychtol B., Adler A., Solà J., Böhm S.H., Bodenstein M. (2012) "Toward morphological thoracic EIT: major signal sources correspond to respective organ locations in CT." ''IEEE Trans. Biomed. Eng.'' 59(11): 3000–8. Improving the signal-to-noise ratio, e.g. by using active surface electrodes, further reduces imaging errors.Rigaud B., Shi Y., Chauveau N., Morucci J.P. (1993) "Experimental acquisition system for impedance tomography with active electrode approach." ''Med. Biol. Eng. Comput.'' 31(6): 593–9.Gaggero P.O., Adler A., Brunner J., Seitz P. (2012) "Electrical impedance tomography system based on active electrodes." ''Physiol. Meas.'' 33(5): 831–47. Some of the latest EIT systems with active electrodes monitor electrode performance through an extra channel and are able to compensate for insufficient skin contact by removing them from the measurements. Another potential solution to problem with electrode-skin contact is contactless EIT technique which uses voltage excitation and capacitive coupling instead of direct contact with the skin. Capacitively coupled electrodes are more comfortable for the patient but maintaining a constant and equal coupling capacitance for all electrodes is challenging in real measurements. Time difference EIT bypasses most of these issues by recording measurements in the same individual between two or more physiological states associated with linear conductivity changes. One of the best examples for this approach is lung tissue during breathing due to linear conductivity changes between inspiration and expiration which are caused by varying contents of insulating air during each breath cycle. This permits digital subtraction of recorded measurements obtained during the breath cycle and results in functional images of lung ventilation. One major advantage is that relative changes of conductivity remain comparable between measurements even if one of the recording electrodes is less conductive than the others, thereby reducing most artifacts and image distortions. However, incorporating ''a priori'' data sets or meshes in difference EIT is still useful in order to project images onto the most likely organ morphology, which depends on weight, height, gender, and other individual factors. The open source project EIDORS provides a suite of programs (written in
Matlab MATLAB (an abbreviation of "MATrix LABoratory") is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks. MATLAB allows matrix manipulations, plotting of functions and data, implementat ...
/
GNU Octave GNU Octave is a high-level programming language primarily intended for scientific computing and numerical computation. Octave helps in solving linear and nonlinear problems numerically, and for performing other numerical experiments using a lan ...
) for data reconstruction and display under the GNU GPL license. The direct nonlinear D-bar method Mueller J L and Siltanen S (2012), Linear and Nonlinear Inverse Problems with Practical Applications. SIAM. for nonlinear EIT reconstruction is available in Matlab code a

The Open Innovation EIT Research Initiative is aimed at advancing the development of electrical impedance tomography (EIT) in general and to ultimately accelerate its clinical adoption. A plug-and-play EIT hardware and software package is available through Swisstom and can be acquired at net cost price. Image reconstruction and processing of raw data obtained with this set can be carried out without any limitations by the software tools provided through EIDORS.


Properties

In contrast to most other tomographic imaging techniques, EIT does not apply any kind of ionizing radiation. Currents typically applied in EIT are relatively small and certainly below the threshold at which they would cause significant nerve stimulation. The frequency of the alternating current is sufficiently high not to give rise to electrolytic effects in the body and the Ohmic power dissipated is sufficiently small and diffused over the body to be easily handled by the body's thermoregulatory system. These properties qualify EIT to be continuously applied in humans, e.g. during mechanical ventilation in an intensive care unit (ICU). Because the equipment needed in order to perform EIT is much smaller and less costly than in conventional tomography, EIT qualifies for continuous real time visualization of lung ventilation right at the bedside. EIT's major disadvantage versus conventional tomography is its lower maximum spatial resolution (approximately 15% of electrode array diameter in EIT compared to 1 mm in CT and MRI). However, resolution can be improved using 32 instead of 16 electrodes. Image quality can be further improved by constructing an EIT system with active surface electrodes, which significantly reduce signal loss, artifacts, and interferences associated with cables as well as cable length and handling. In contrast to spatial resolution, temporal resolution of EIT (0.1 milliseconds) is much higher than in CT or MRI (0.1 seconds).


Applications


Lung (a-EIT, td-EIT)

EIT is particularly useful for monitoring lung function because lung tissue resistivity is five times higher than most other soft tissues in the thorax. This results in high absolute contrast of the lungs. In addition, lung resistivity increases and decreases several-fold between inspiration and expiration which explains why monitoring ventilation is currently the most promising clinical application of EIT since
mechanical ventilation Mechanical ventilation, assisted ventilation or intermittent mandatory ventilation (IMV), is the medical term for using a machine called a ventilator to fully or partially provide artificial ventilation. Mechanical ventilation helps move a ...
frequently results in
ventilator-associated lung injury Ventilator-associated lung injury (VALI) is an acute lung injury that develops during mechanical ventilation and is termed ventilator-induced lung injury (VILI) if it can be proven that the mechanical ventilation caused the acute lung injury. In c ...
(VALI). The feasibility of EIT for lung imaging was first demonstrated at Rensselaer Polytechnic Institute in 1990 using the NOSER algorithm. Time difference EIT can resolve the changes in the distribution of lung volumes between dependent and non-dependent lung regions and assist in adjusting ventilator settings to provide lung protective ventilation to patients during critical illness or anesthesia. Most EIT studies have focused on monitoring regional lung function using the information determined by time difference EIT (td-EIT). However absolute EIT (a-EIT) also has the potential to become a clinically useful tool for lung imaging, as this approach would allow one to directly distinguish between lung conditions which result from regions with lower resistivity (e.g. hemothorax, pleural effusion, atelectasis, lung edema) and those with higher resistivity (e.g. pneumothorax, emphysema).Luecke T., Corradi F., Pelosi P. (2012) "Lung imaging for titration of mechanical ventilation" ''Curr. Opin. Anaesth.'' 25(2):131–140. The above image shows an EIT study of a 10-day-old baby breathing normally with 16 adhesive electrodes applied to the chest. Image reconstruction from absolute impedance measurements requires consideration of the exact dimensions and shape of a body as well as the precise electrode location since simplified assumptions would lead to major reconstruction artifacts. While initial studies assessing aspects of absolute EIT have been published, this area of research has not yet reached the level of maturity which would make it suitable for clinical use. In contrast, time difference EIT determines relative impedance changes that may be caused by either ventilation or changes of end-expiratory lung volume. These relative changes are referred to a baseline level, which is typically defined by the intra-thoracic impedance distribution at the end of expiration. Time difference EIT images can be generated continuously and right at the bedside. These attributes make regional lung function monitoring particularly useful whenever there is a need to improve oxygenation or CO2 elimination and when therapy changes are intended to achieve a more homogenous gas distribution in mechanically ventilated patients. EIT lung imaging can resolve the changes in the regional distribution of lung volumes between e.g. dependent and non-dependent lung regions as ventilator parameters are changed. Thus, EIT measurements may be used to guide specific ventilator settings to maintain lung protective ventilation for each patient.Adler A., Amato M.B., Arnold J.H., Bayford R., Bodenstein M., Böhm S.H., Brown B.H., Frerichs I., Stenqvist O., Weiler N., Wolf G.K. (2012) "Whither lung EIT: where are we, where do we want to go and what do we need to get there?" ''Physiol. Meas.'' 33(5):679–94. Besides the applicability of EIT in the ICU, first studies with spontaneously breathing patients reveal further promising applications. The high temporal resolution of EIT allows regional assessment of common dynamic parameters used in
pulmonary function testing Pulmonary function testing (PFT) is a complete evaluation of the respiratory system including patient history, physical examinations, and tests of pulmonary function. The primary purpose of pulmonary function testing is to identify the severity ...
(e.g. forced expiratory volume in 1 second). Additionally, specially developed image fusion methods overlaying functional EIT-data with morphological patient data (e.g. CT or
MRI Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to form pictures of the anatomy and the physiological processes of the body. MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves ...
images) may be used to get a comprehensive insight into the pathophysiology of the lungs, which might be useful for patients with obstructive lung diseases (e.g.
COPD Chronic obstructive pulmonary disease (COPD) is a type of progressive lung disease characterized by long-term respiratory symptoms and airflow limitation. The main symptoms include shortness of breath and a cough, which may or may not produce ...
, CF). After many years of lung EIT research with provisional EIT equipment or series models manufactured in very small numbers, two
commercial systems Commercial may refer to: * a dose of advertising conveyed through media (such as - for example - radio or television) ** Radio advertisement ** Television advertisement * (adjective for:) commerce, a system of voluntary exchange of products and s ...
for lung EIT have recently entered the medical technology market: Dräger's PulmoVista® 500 an
Swisstom AG
s Swisstom BB2. Both models are currently being installed in intensive care units and are already used as aides in decision-making processes related to the treatment of patients with
acute respiratory distress syndrome Acute respiratory distress syndrome (ARDS) is a type of respiratory failure characterized by rapid onset of widespread inflammation in the lungs. Symptoms include shortness of breath (dyspnea), rapid breathing (tachypnea), and bluish skin colo ...
(ARDS). The increasing availability of commercial EIT systems in ICUs will show whether the promising body of evidence obtained from animal models will apply to humans as well (EIT-guided lung recruitment, selection of optimum PEEP levels, pneumothorax detection, prevention of ventilator associated lung injury (VALI), etc.). This would be highly desirable, given that recent studies suggest that 15% of mechanically ventilated patients in the ICU will develop acute lung injury (ALI) with attendant progressive lung collapse and which is associated with a reportedly high mortality of 39%.Rubenfeld G., Caldwell E., Peabody E., Weaver J., Martin D., Ne M., Stern E., Hudson L. (2005) "Incidence and outcomes of acute lung injury." ''N. Engl. J. Med.'' 353(16): 1685–1693. Just recently, the first prospective animal trial on EIT-guided mechanical ventilation and outcome could demonstrate significant benefits in regard to respiratory mechanics, gas exchange, and histological signs of ventilator-associated lung injury.Wolf G., Gomez-Laberge C., Rettig J., Vargas S., Smallwood C., Prabhu S., Vitali S., Zurakowski D. and Arnold J. (2013). "Mechanical ventilation guided by electrical impedance tomography in experimental acute lung injury" ''Crit. Care. Med.'' 41(5):1296–1304. In addition to visual information (e.g. regional distribution of tidal volume), EIT measurements provide raw data sets that can be used to calculate other helpful information (e.g. changes of intrathoracal gas volume during critical illness) – however, such parameters still require careful evaluation and validation. Another interesting aspect of thoracic EIT is its ability to record and filter pulsatile signals of perfusion. Although promising studies have been published on this topic,Solà J., Adler A., Santos A., Tusman G., Sipmann F.S., Bohm S.H. (2011) "Non-invasive monitoring of central blood pressure by electrical impedance tomography: first experimental evidence." ''Med. Biol. Eng. Comput.'' 49(4):409–15. this technology is still at its beginnings. A breakthrough would allow simultaneous visualization of both regional blood flow and regional ventilation – enabling clinicians to locate and react upon physiological shunts caused by regional mismatches of lung ventilation and perfusion with associated hypoxemia.


Breast (MF-EIT)

EIT is being investigated in the field of breast imaging as an alternative/complementary technique to
mammography Mammography (also called mastography) is the process of using low-energy X-rays (usually around 30 kVp) to examine the human breast for diagnosis and screening. The goal of mammography is the early detection of breast cancer, typically through ...
and
magnetic resonance imaging Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to form pictures of the anatomy and the physiological processes of the body. MRI scanners use strong magnetic fields, magnetic field gradients, and radio wave ...
(MRI) for breast cancer detection. The low specificity of mammography and of MRI result in a relatively high rate of false positive screenings, with high distress for patients and cost for healthcare structures. Development of alternative imaging techniques for this indication would be desirable due to the shortcomings of the existing methods: ionizing radiation in mammography and the risk of inducing
nephrogenic systemic fibrosis Nephrogenic systemic fibrosis is a rare syndrome that involves fibrosis of skin, joints, eyes, and internal organs. NSF is caused by exposure to gadolinium in gadolinium-based MRI contrast agents (GBCAs) in patients with impaired kidney function ...
(NSF) in patients with decreased renal function by administering the contrast agent used in breast MRI,
Gadolinium Gadolinium is a chemical element with the symbol Gd and atomic number 64. Gadolinium is a silvery-white metal when oxidation is removed. It is only slightly malleable and is a ductile rare-earth element. Gadolinium reacts with atmospheric oxygen ...
. Literature shows that the electrical properties differ between normal and malignant breast tissues, setting the stage for cancer detection through determination of electrical properties. An early commercial development of non-tomographic electrical impedance imaging was the T-Scan device which was reported to improve sensitivity and specificity when used as an adjunct to screening mammography. A report to the United States
Food and Drug Administration The United States Food and Drug Administration (FDA or US FDA) is a federal agency of the Department of Health and Human Services. The FDA is responsible for protecting and promoting public health through the control and supervision of food ...
(FDA) describes a study involving 504 subjects where the sensitivity of mammography was 82%, 62% for the T-Scan alone, and 88% for the two combined. The specificity was 39% for mammography, 47% for the T-Scan alone, and 51% for the two combined. Several research groups across the world are actively developing the technique. A frequency sweep seems to be an effective technique for detecting breast cancer using EIT.Kim B. S., Isaacson D., Xia H., Kao T. J., Newell J. C., Saulnier, G. J. (2007) "A method for analyzing electrical impedance spectroscopy data from breast cancer patients" "Physiological measurement" 28(7):S237. United States Patent US 8,200,309 B2 combines electrical impedance scanning with magnetic resonance low frequency current density imaging in a clinically acceptable configuration not requiring the use of gadolinium chelate enhancement in magnetic resonance mammography.


Cervix (MF-EIT)

In addition to his pioneering role in the development of the first EIT systems in Sheffield professor Brian H. Brown is currently active in the research and development of an electrical impedance spectroscope based on MF-EIT. According to a study published by Brown in 2000, MF-EIT is able to predict ervical intraepithelial neoplasia(CIN) grades 2 and 3 according to
Pap smear The Papanicolaou test (abbreviated as Pap test, also known as Pap smear (AE), cervical smear (BE), cervical screening (BE), or smear test (BE)) is a method of cervical screening used to detect potentially precancerous and cancerous processes in t ...
with a sensitivity and specificity of 92% each.Brown BH, Tidy JA, Boston K, Blackett AD, Smallwood RH, Sharp F. (2000)"Relation between tissue structure and imposed electric current flow in cervical neoplasia." ''Lancet'' 355(9207):892–5. Whether cervical MF-EIT is going to be introduced as an adjunct or an alternative to the Pap smear has yet to be decided. Brown is academic founder o
Zilico Limited
which distributes the spectroscope (ZedScan I). The device received EC certification from its Notified Body in 2013 and is currently being introduced into a number of clinics in the UK and healthcare systems across the globe.


Brain (a-EIT, td-EIT, mf-EIT)

EIT has been suggested as a basis for
brain imaging Neuroimaging is the use of quantitative (computational) techniques to study the structure and function of the central nervous system, developed as an objective way of scientifically studying the healthy human brain in a non-invasive manner. Incre ...
to enable detection and monitoring of
cerebral ischemia Brain ischemia is a condition in which there is insufficient bloodflow to the brain to meet metabolic demand. This leads to poor oxygen supply or cerebral hypoxia and thus leads to the death of brain tissue or cerebral infarction/ischemic stroke. ...
,
haemorrhage Bleeding, hemorrhage, haemorrhage or blood loss, is blood escaping from the circulatory system from damaged blood vessels. Bleeding can occur internally, or externally either through a natural opening such as the mouth, nose, ear, urethra, v ...
, and other morphological pathologies associated with impedance changes due to neuronal cell swelling, i.e. cerebral
hypoxemia Hypoxemia is an abnormally low level of oxygen in the blood. More specifically, it is oxygen deficiency in arterial blood. Hypoxemia has many causes, and often causes hypoxia as the blood is not supplying enough oxygen to the tissues of the bod ...
and
hypoglycemia Hypoglycemia, also called low blood sugar, is a fall in blood sugar to levels below normal, typically below 70 mg/dL (3.9 mmol/L). Whipple's triad is used to properly identify hypoglycemic episodes. It is defined as blood glucose bel ...
. While EIT's maximum spatial resolution of approximately 15% of the electrode array diameter is significantly lower than that of cerebral CT or MRI (about one millimeter), temporal resolution of EIT is much higher than in CT or MRI (0.1 milliseconds compared to 0.1 seconds). This makes EIT also interesting for monitoring normal brain function and neuronal activity in intensive care units or the preoperative setting for localization of epileptic foci by telemetric recordings. Holder was able to demonstrate in 1992 that changes of intracerebral impedance can be detected noninvasively through the cranium by surface electrode measurements. Animal models of experimental stroke or seizure showed increases of impedance of up to 100% and 10%, respectively. More recent EIT systems offer the option to apply alternating currents from non-adjacent drive electrodes. So far, cerebral EIT has not yet reached the maturity to be adopted in clinical routine, yet clinical studies are currently being performed on stroke and epilepsy. In this use EIT depends upon applying low frequency currents above the skull that are around <100 Hz since during neuronal rest at this frequency these currents remain in the
extracellular This glossary of biology terms is a list of definitions of fundamental terms and concepts used in biology, the study of life and of living organisms. It is intended as introductory material for novices; for more specific and technical definitions ...
space and therefore unable to enter the intracellular space within neurons. However, when a neuron generates an
action potential An action potential occurs when the membrane potential of a specific cell location rapidly rises and falls. This depolarization then causes adjacent locations to similarly depolarize. Action potentials occur in several types of animal cells ...
or is about to be depolarized, resistance of its membrane preventing this will be reduced by eighty-fold. Whenever this happens in a larger numbers of neurons, resistivity changes of about 0.06–1.7 % will result. These changes in resistivity provide a means of detecting coherent neuronal activity across larger numbers of neurons and so the tomographic imaging of neural brain activity. Unfortunately while such changes are detectable "they are just too small to support reliable production of images." The prospects of using this technique for this indication will depend upon improved signal processing or recording. A study reported in June 2011 that Functional Electrical Impedance Tomography by Evoke Response (fEITER) has been used to image changes in brain activity after injection of an anaesthetic. One of the benefits of the technique is that the equipment required is small enough and easy enough to transport so that it can be used for monitoring depth of anesthesia in operating theatres.


Perfusion (td-EIT)

Due to its relatively high conductivity, blood may be used for functional imaging of perfusion in tissues and organs characterized by lower conductivities, e.g. to visualize regional lung perfusion.Kunst P.W., Vonk Noordegraaf A., Hoekstra O.S., Postmus P.E., de Vries P.M. (1998) "Ventilation and perfusion imaging by electrical impedance tomography: a comparison with radionuclide scanning." ''Physiol. Meas.'' 19(4): 481–90. Background of this approach is that pulsatile tissue impedance changes according to differences in the filling of blood vessels between systole and diastole, particularly when injecting saline as contrasting agent.


Sports medicine / home care (a-EIT, td-EIT)

Electrical impedance measurements may also be used to calculate abstract parameters, i.e. nonvisual information. Recent advances in EIT technology as well as the lower number of electrodes required for recording global instead of regional parameters in healthy individuals can be used for non-invasive determination of e.g. VO2 or arterial blood pressure in sports medicine or home care.


Commercial systems


a-EIT and td-EIT

Even though medical EIT systems had not been used broadly until recently, several medical equipment manufacturers have been supplying commercial versions of lung imaging systems developed by university research groups. The first such system is produced by Maltron International who distribute the ''Sheffield Mark 3.5'' system with 16 electrodes. Similar systems are the ''Goe MF II system'' developed by the
University of Göttingen The University of Göttingen, officially the Georg August University of Göttingen, (german: Georg-August-Universität Göttingen, known informally as Georgia Augusta) is a public research university in the city of Göttingen, Germany. Founded ...
, Germany and distributed through
CareFusion CareFusion was a medical company specializing in two areas: reducing medication errors and prevention of health care-associated infections. Spinoff CareFusion was created in 2009 as a spinoff of medical technology businesses from Cardinal Hea ...
(16 electrodes) as well as the ''Enlight 1800'' developed at the University of São Paulo School of Medicine and the Polytechnic Institute of the University of São Paulo, Brazil which is distributed by Timpel SA (32 electrodes). These systems typically comply with medical safety legislation and have been primarily employed by clinical research groups in hospitals, most of them in critical care. The first EIT device for lung function monitoring designed for everyday clinical use in the critical care environment has been made available by Dräger Medical in 2011 – the ''PulmoVista® 500'' (16-electrode system). Another commercial EIT system designed for monitoring lung function in the ICU setting is based on 32 active electrodes and was first presented at 2013's annual ESICM congress – the ''Swisstom BB2''. In the meantime, Swisstom AG's ''Swisstom’s BB2'' has been released to the market at 2014's International Symposium on Intensive Care and Emergency Medicine
ISICEM
and will be distributed in Western Europe through a partnership between Swisstom and Maquet.


MF-EIT

Multifrequency-EIT (MF-EIT) or electrical impedance spectroscopy (EIS) systems are typically designed to detect or locate abnormal tissue, e.g. precancerous lesions or cancer. Impedance Medical Technologies manufacture systems based on designs by the Research Institute of Radioengineering and Electronics of the
Russian Academy of Science The Russian Academy of Sciences (RAS; russian: Росси́йская акаде́мия нау́к (РАН) ''Rossíyskaya akadémiya naúk'') consists of the national academy of Russia; a network of scientific research institutes from across t ...
in Moscow, that are aimed especially at breast cancer detection. Texas-based Mirabel Medical Systems, Inc. develops a similar solution for non-invasive detection of breast cancer and offers the ''T-Scan 2000ED''. Zilico Limited distributes an electrical impedance spectroscope named ''ZedScan I'' as a medical device supposed to aid cervical intraepithelial neoplasia location/diagnosis. The device just receive
EC certification
in 2013.


V5R

The v5rITS, http://www.itoms.com/products/v5r-electrical-resistance-tomography/ is a high performance device, based upon a voltage-voltage measurement technique, designed to improve process control. The high frame rate of the v5r (over 650 frames per second) means that it can be used to monitor rapidly evolving processes or dynamic flow conditions. The data it provides can be used to determine the flow profile of complex multiphase processes; allowing engineers to discriminate between
laminar flow In fluid dynamics, laminar flow is characterized by fluid particles following smooth paths in layers, with each layer moving smoothly past the adjacent layers with little or no mixing. At low velocities, the fluid tends to flow without lateral mi ...
,
plug flow In fluid mechanics, plug flow is a simple model of the velocity profile of a fluid flowing in a pipe. In plug flow, the velocity of the fluid is assumed to be constant across any cross-section of the pipe perpendicular to the axis of the pipe. T ...
and other important flow conditions for deeper understanding and improved process control. When used for concentration measurements, the ability to measure full impedance across a wide range of phase ratios means the v5r is able to deliver considerable accuracy across a wider conductivity range compared to other devices.


See also

*
Electrical capacitance volume tomography Electrical capacitance volume tomography (ECVT) is a non-invasive 3D imaging technology applied primarily to multiphase flows. It was first introduced by W. Warsito, Q. Marashdeh, and L.-S. Fan as an extension of the conventional electrical capacita ...
*
Electrical capacitance tomography Electrical capacitance tomography (ECT) is a method for determination of the dielectric permittivity distribution in the interior of an object from external capacitance measurements. It is a close relative of electrical impedance tomography and i ...
*
Respiratory monitoring Mechanical ventilation, assisted ventilation or intermittent mandatory ventilation (IMV), is the medical term for using a machine called a ventilator to fully or partially provide artificial ventilation. Mechanical ventilation helps move air i ...
* EIDORS a reconstruction toolbox for EIT *
Industrial Tomography Systems Industrial Tomography Systems plc, occasionally abbreviated to ITOMS or simply ITS, is a manufacturer of process visualization systems based upon the principles of tomography. Headquartered in Manchester, UK, the company provides instrumentatio ...


References

{{DEFAULTSORT:Electrical Impedance Tomography Electrodiagnosis Impedance measurements Inverse problems Medical imaging