HOME

TheInfoList



OR:

Effective descriptive set theory is the branch of descriptive set theory dealing with sets of reals having
lightface In the mathematical field of descriptive set theory, a pointclass is a collection of sets of points, where a ''point'' is ordinarily understood to be an element of some perfect Polish space. In practice, a pointclass is usually characterized by ...
definitions; that is, definitions that do not require an arbitrary real parameter (Moschovakis 1980). Thus effective descriptive set theory combines descriptive set theory with recursion theory.


Constructions


Effective Polish space

An effective Polish space is a
complete Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies t ...
separable
metric space In mathematics, a metric space is a set together with a notion of '' distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general set ...
that has a
computable presentation Computability is the ability to solve a problem in an effective manner. It is a key topic of the field of computability theory within mathematical logic and the theory of computation within computer science. The computability of a problem is clos ...
. Such spaces are studied in both effective descriptive set theory and in
constructive analysis In mathematics, constructive analysis is mathematical analysis done according to some principles of constructive mathematics. This contrasts with ''classical analysis'', which (in this context) simply means analysis done according to the (more com ...
. In particular, standard examples of Polish spaces such as the
real line In elementary mathematics, a number line is a picture of a graduated straight line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real number to a poin ...
, the
Cantor set In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and introduced by German mathematician Georg Cantor in 1883. T ...
and the
Baire space In mathematics, a topological space X is said to be a Baire space if countable unions of closed sets with empty interior also have empty interior. According to the Baire category theorem, compact Hausdorff spaces and complete metric spaces are ...
are all effective Polish spaces.


Arithmetical hierarchy

The
arithmetical hierarchy In mathematical logic, the arithmetical hierarchy, arithmetic hierarchy or Kleene–Mostowski hierarchy (after mathematicians Stephen Cole Kleene and Andrzej Mostowski) classifies certain sets based on the complexity of formulas that define th ...
, arithmetic hierarchy or
Kleene Stephen Cole Kleene ( ; January 5, 1909 – January 25, 1994) was an American mathematician. One of the students of Alonzo Church, Kleene, along with Rózsa Péter, Alan Turing, Emil Post, and others, is best known as a founder of the branch of ...
Mostowski hierarchy classifies certain sets based on the complexity of formulas that define them. Any set that receives a classification is called "arithmetical". More formally, the arithmetical hierarchy assigns classifications to the formulas in the language of first-order arithmetic. The classifications are denoted \Sigma^0_n and \Pi^0_n for natural numbers ''n'' (including 0). The Greek letters here are
lightface In the mathematical field of descriptive set theory, a pointclass is a collection of sets of points, where a ''point'' is ordinarily understood to be an element of some perfect Polish space. In practice, a pointclass is usually characterized by ...
symbols, which indicates that the formulas do not contain set parameters. If a formula \phi is logically equivalent to a formula with only
bounded quantifier In the study of formal theories in mathematical logic, bounded quantifiers (a.k.a. restricted quantifiers) are often included in a formal language in addition to the standard quantifiers "∀" and "∃". Bounded quantifiers differ from "∀" and ...
s then \phi is assigned the classifications \Sigma^0_0 and \Pi^0_0. The classifications \Sigma^0_n and \Pi^0_n are defined inductively for every natural number ''n'' using the following rules: *If \phi is logically equivalent to a formula of the form \exists n_1 \exists n_2\cdots \exists n_k \psi, where \psi is \Pi^0_n, then \phi is assigned the classification \Sigma^0_. *If \phi is logically equivalent to a formula of the form \forall n_1 \forall n_2\cdots \forall n_k \psi, where \psi is \Sigma^0_n, then \phi is assigned the classification \Pi^0_.


References

* *
Second edition available online
{{settheory-stub, date=November 2005