duality (mathematics)
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a duality translates concepts, theorems or
mathematical structure In mathematics, a structure is a set endowed with some additional features on the set (e.g. an operation, relation, metric, or topology). Often, the additional features are attached or related to the set, so as to provide it with some additional ...
s into other concepts, theorems or structures, in a
one-to-one One-to-one or one to one may refer to: Mathematics and communication *One-to-one function, also called an injective function *One-to-one correspondence, also called a bijective function *One-to-one (communication), the act of an individual comm ...
fashion, often (but not always) by means of an involution operation: if the dual of is , then the dual of is . Such involutions sometimes have fixed points, so that the dual of is itself. For example, Desargues' theorem is self-dual in this sense under the ''standard
duality Duality may refer to: Mathematics * Duality (mathematics), a mathematical concept ** Dual (category theory), a formalization of mathematical duality ** Duality (optimization) ** Duality (order theory), a concept regarding binary relations ** Dual ...
in projective geometry''. In mathematical contexts, ''duality'' has numerous meanings. It has been described as "a very pervasive and important concept in (modern) mathematics" and "an important general theme that has manifestations in almost every area of mathematics". Many mathematical dualities between objects of two types correspond to pairings,
bilinear function In mathematics, a bilinear map is a function combining elements of two vector spaces to yield an element of a third vector space, and is linear in each of its arguments. Matrix multiplication is an example. Definition Vector spaces Let V, W ...
s from an object of one type and another object of the second type to some family of scalars. For instance, ''linear algebra duality'' corresponds in this way to bilinear maps from pairs of vector spaces to scalars, the ''duality between distributions and the associated test functions'' corresponds to the pairing in which one integrates a distribution against a test function, and '' Poincaré duality'' corresponds similarly to intersection number, viewed as a pairing between submanifolds of a given manifold. From a
category theory Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, cate ...
viewpoint, duality can also be seen as a functor, at least in the realm of vector spaces. This functor assigns to each space its dual space, and the pullback construction assigns to each arrow its dual .


Introductory examples

In the words of Michael Atiyah, The following list of examples shows the common features of many dualities, but also indicates that the precise meaning of duality may vary from case to case.


Complement of a subset

A simple, maybe the most simple, duality arises from considering
subset In mathematics, Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are ...
s of a fixed set . To any subset , the complement consists of all those elements in that are not contained in . It is again a subset of . Taking the complement has the following properties: * Applying it twice gives back the original set, i.e., . This is referred to by saying that the operation of taking the complement is an '' involution''. * An inclusion of sets is turned into an inclusion in the ''opposite'' direction . * Given two subsets and of , is contained in if and only if is contained in . This duality appears in topology as a duality between open and
closed subset In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a clo ...
s of some fixed topological space : a subset of is closed if and only if its complement in is open. Because of this, many theorems about closed sets are dual to theorems about open sets. For example, any union of open sets is open, so dually, any intersection of closed sets is closed. The
interior Interior may refer to: Arts and media * ''Interior'' (Degas) (also known as ''The Rape''), painting by Edgar Degas * ''Interior'' (play), 1895 play by Belgian playwright Maurice Maeterlinck * ''The Interior'' (novel), by Lisa See * Interior de ...
of a set is the largest open set contained in it, and the closure of the set is the smallest closed set that contains it. Because of the duality, the complement of the interior of any set is equal to the closure of the complement of .


Dual cone

A duality in geometry is provided by the dual cone construction. Given a set C of points in the plane \mathbb R^2 (or more generally points in the dual cone is defined as the set C^* \subseteq \mathbb R^2 consisting of those points (x_1, x_2) satisfying x_1 c_1 + x_2 c_2 \ge 0 for all points (c_1, c_2) in C, as illustrated in the diagram. Unlike for the complement of sets mentioned above, it is not in general true that applying the dual cone construction twice gives back the original set C. Instead, C^ is the smallest cone containing C which may be bigger than C. Therefore this duality is weaker than the one above, in that * Applying the operation twice gives back a possibly bigger set: for all C, C is contained in C^. (For some C, namely the cones, the two are actually equal.) The other two properties carry over without change: * It is still true that an inclusion C \subseteq D is turned into an inclusion in the opposite direction (D^* \subseteq C^*). * Given two subsets C and D of the plane, C is contained in D^* if and only if D is contained in C^*.


Dual vector space

A very important example of a duality arises in linear algebra by associating to any vector space its dual vector space . Its elements are the linear functionals \varphi: V \to K, where is the field over which is defined. The three properties of the dual cone carry over to this type of duality by replacing subsets of \mathbb R^2 by vector space and inclusions of such subsets by linear maps. That is: * Applying the operation of taking the dual vector space twice gives another vector space . There is always a map . For some , namely precisely the finite-dimensional vector spaces, this map is an isomorphism. * A linear map gives rise to a map in the opposite direction (). * Given two vector spaces and , the maps from to correspond to the maps from to . A particular feature of this duality is that and are isomorphic for certain objects, namely finite-dimensional vector spaces. However, this is in a sense a lucky coincidence, for giving such an isomorphism requires a certain choice, for example the choice of a basis of . This is also true in the case if is a
Hilbert space In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natural ...
, ''via'' the Riesz representation theorem.


Galois theory

In all the dualities discussed before, the dual of an object is of the same kind as the object itself. For example, the dual of a vector space is again a vector space. Many duality statements are not of this kind. Instead, such dualities reveal a close relation between objects of seemingly different nature. One example of such a more general duality is from Galois theory. For a fixed Galois extension , one may associate the Galois group to any intermediate field (i.e., ). This group is a subgroup of the Galois group . Conversely, to any such subgroup there is the fixed field consisting of elements fixed by the elements in . Compared to the above, this duality has the following features: * An extension of intermediate fields gives rise to an inclusion of Galois groups in the opposite direction: . * Associating to and to are inverse to each other. This is the content of the fundamental theorem of Galois theory.


Order-reversing dualities

Given a poset (short for partially ordered set; i.e., a set that has a notion of ordering but in which two elements cannot necessarily be placed in order relative to each other), the
dual Dual or Duals may refer to: Paired/two things * Dual (mathematics), a notion of paired concepts that mirror one another ** Dual (category theory), a formalization of mathematical duality *** see more cases in :Duality theories * Dual (grammatical ...
poset comprises the same ground set but the converse relation. Familiar examples of dual partial orders include * the subset and superset relations and on any collection of sets, such as the subsets of a fixed set . This gives rise to the first example of a duality mentioned above. * the ''divides'' and ''multiple-of'' relations on the integers. * the ''descendant-of'' and ''ancestor-of'' relations on the set of humans. A ''duality transform'' is an
involutive antiautomorphism In mathematics, an antihomomorphism is a type of function defined on sets with multiplication that reverses the order of multiplication. An antiautomorphism is a bijective antihomomorphism, i.e. an antiisomorphism, from a set to itself. From b ...
of a partially ordered set , that is, an
order-reversing In mathematics, a monotonic function (or monotone function) is a function (mathematics), function between List of order structures in mathematics, ordered sets that preserves or reverses the given order relation, order. This concept first aro ...
involution . In several important cases these simple properties determine the transform uniquely up to some simple symmetries. For example, if , are two duality transforms then their composition is an
order automorphism In the mathematical field of order theory, an order isomorphism is a special kind of monotone function that constitutes a suitable notion of isomorphism for partially ordered sets (posets). Whenever two posets are order isomorphic, they can be cons ...
of ; thus, any two duality transforms differ only by an order automorphism. For example, all order automorphisms of a power set are induced by permutations of . A concept defined for a partial order will correspond to a ''dual concept'' on the dual poset . For instance, a minimal element of will be a
maximal element In mathematics, especially in order theory, a maximal element of a subset ''S'' of some preordered set is an element of ''S'' that is not smaller than any other element in ''S''. A minimal element of a subset ''S'' of some preordered set is defin ...
of : minimality and maximality are dual concepts in order theory. Other pairs of dual concepts are upper and lower bounds, lower sets and upper sets, and
ideals Ideal may refer to: Philosophy * Ideal (ethics), values that one actively pursues as goals * Platonic ideal, a philosophical idea of trueness of form, associated with Plato Mathematics * Ideal (ring theory), special subsets of a ring considered ...
and filters. In topology, open sets and
closed set In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a cl ...
s are dual concepts: the complement of an open set is closed, and vice versa. In matroid theory, the family of sets complementary to the independent sets of a given matroid themselves form another matroid, called the dual matroid.


Dimension-reversing dualities

There are many distinct but interrelated dualities in which geometric or topological objects correspond to other objects of the same type, but with a reversal of the dimensions of the features of the objects. A classical example of this is the duality of the Platonic solids, in which the cube and the octahedron form a dual pair, the dodecahedron and the icosahedron form a dual pair, and the tetrahedron is self-dual. The dual polyhedron of any of these polyhedra may be formed as the
convex hull In geometry, the convex hull or convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space ...
of the center points of each face of the primal polyhedron, so the vertices of the dual correspond one-for-one with the faces of the primal. Similarly, each edge of the dual corresponds to an edge of the primal, and each face of the dual corresponds to a vertex of the primal. These correspondences are incidence-preserving: if two parts of the primal polyhedron touch each other, so do the corresponding two parts of the dual polyhedron. More generally, using the concept of polar reciprocation, any convex polyhedron, or more generally any
convex polytope A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the n-dimensional Euclidean space \mathbb^n. Most texts. use the term "polytope" for a bounded convex polytope, and the wo ...
, corresponds to a dual polyhedron or dual polytope, with an -dimensional feature of an -dimensional polytope corresponding to an -dimensional feature of the dual polytope. The incidence-preserving nature of the duality is reflected in the fact that the face lattices of the primal and dual polyhedra or polytopes are themselves order-theoretic duals. Duality of polytopes and order-theoretic duality are both involutions: the dual polytope of the dual polytope of any polytope is the original polytope, and reversing all order-relations twice returns to the original order. Choosing a different center of polarity leads to geometrically different dual polytopes, but all have the same combinatorial structure. From any three-dimensional polyhedron, one can form a
planar graph In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross ...
, the graph of its vertices and edges. The dual polyhedron has a dual graph, a graph with one vertex for each face of the polyhedron and with one edge for every two adjacent faces. The same concept of planar graph duality may be generalized to graphs that are drawn in the plane but that do not come from a three-dimensional polyhedron, or more generally to graph embeddings on surfaces of higher genus: one may draw a dual graph by placing one vertex within each region bounded by a cycle of edges in the embedding, and drawing an edge connecting any two regions that share a boundary edge. An important example of this type comes from
computational geometry Computational geometry is a branch of computer science devoted to the study of algorithms which can be stated in terms of geometry. Some purely geometrical problems arise out of the study of computational geometric algorithms, and such problems ar ...
: the duality for any finite set of points in the plane between the Delaunay triangulation of and the Voronoi diagram of . As with dual polyhedra and dual polytopes, the duality of graphs on surfaces is a dimension-reversing involution: each vertex in the primal embedded graph corresponds to a region of the dual embedding, each edge in the primal is crossed by an edge in the dual, and each region of the primal corresponds to a vertex of the dual. The dual graph depends on how the primal graph is embedded: different planar embeddings of a single graph may lead to different dual graphs. Matroid duality is an algebraic extension of planar graph duality, in the sense that the dual matroid of the graphic matroid of a planar graph is isomorphic to the graphic matroid of the dual graph. A kind of geometric duality also occurs in optimization theory, but not one that reverses dimensions. A linear program may be specified by a system of real variables (the coordinates for a point in Euclidean space a system of linear constraints (specifying that the point lie in a halfspace; the intersection of these halfspaces is a convex polytope, the feasible region of the program), and a linear function (what to optimize). Every linear program has a dual problem with the same optimal solution, but the variables in the dual problem correspond to constraints in the primal problem and vice versa.


Duality in logic and set theory

In logic, functions or relations and are considered dual if , where ¬ is
logical negation In logic, negation, also called the logical complement, is an operation that takes a proposition P to another proposition "not P", written \neg P, \mathord P or \overline. It is interpreted intuitively as being true when P is false, and false ...
. The basic duality of this type is the duality of the ∃ and ∀ quantifiers in classical logic. These are dual because and are equivalent for all predicates in classical logic: if there exists an for which fails to hold, then it is false that holds for all (but the converse does not hold constructively). From this fundamental logical duality follow several others: * A formula is said to be ''
satisfiable In mathematical logic, a formula is ''satisfiable'' if it is true under some assignment of values to its variables. For example, the formula x+3=y is satisfiable because it is true when x=3 and y=6, while the formula x+1=x is not satisfiable over ...
'' in a certain model if there are assignments to its free variables that render it true; it is ''valid'' if ''every'' assignment to its free variables makes it true. Satisfiability and validity are dual because the invalid formulas are precisely those whose negations are satisfiable, and the unsatisfiable formulas are those whose negations are valid. This can be viewed as a special case of the previous item, with the quantifiers ranging over interpretations. * In classical logic, the and operators are dual in this sense, because and are equivalent. This means that for every theorem of classical logic there is an equivalent dual theorem. De Morgan's laws are examples. More generally, . The left side is true if and only if , and the right side if and only if ¬∃''i''.''x''''i''. * In
modal logic Modal logic is a collection of formal systems developed to represent statements about necessity and possibility. It plays a major role in philosophy of language, epistemology, metaphysics, and natural language semantics. Modal logics extend other ...
, means that the proposition is "necessarily" true, and that is "possibly" true. Most interpretations of modal logic assign dual meanings to these two operators. For example in Kripke semantics, " is possibly true" means "there exists some world such that is true in ", while " is necessarily true" means "for all worlds , is true in ". The duality of and then follows from the analogous duality of and . Other dual modal operators behave similarly. For example, temporal logic has operators denoting "will be true at some time in the future" and "will be true at all times in the future" which are similarly dual. Other analogous dualities follow from these: * Set-theoretic union and intersection are dual under the set complement operator . That is, , and more generally, . This follows from the duality of and : an element is a member of if and only if , and is a member of if and only if .


Dual objects

A group of dualities can be described by endowing, for any mathematical object , the set of morphisms into some fixed object , with a structure similar to that of . This is sometimes called internal Hom. In general, this yields a true duality only for specific choices of , in which case is referred to as the ''dual'' of . There is always a map from to the ''bidual'', that is to say, the dual of the dual, X \to X^ := (X^*)^* = \operatorname(\operatorname(X, D), D). It assigns to some the map that associates to any map (i.e., an element in ) the value . Depending on the concrete duality considered and also depending on the object , this map may or may not be an isomorphism.


Dual vector spaces revisited

The construction of the dual vector space V^* = \operatorname(V, K) mentioned in the introduction is an example of such a duality. Indeed, the set of morphisms, i.e., linear maps, forms a vector space in its own right. The map mentioned above is always injective. It is surjective, and therefore an isomorphism, if and only if the dimension of is finite. This fact characterizes finite-dimensional vector spaces without referring to a basis.


Isomorphisms of and and inner product spaces

A vector space is isomorphic to precisely if is finite-dimensional. In this case, such an isomorphism is equivalent to a non-degenerate
bilinear form In mathematics, a bilinear form is a bilinear map on a vector space (the elements of which are called '' vectors'') over a field ''K'' (the elements of which are called ''scalars''). In other words, a bilinear form is a function that is linear i ...
\varphi: V \times V \to K In this case is called an inner product space. For example, if is the field of real or complex numbers, any positive definite bilinear form gives rise to such an isomorphism. In Riemannian geometry, is taken to be the tangent space of a
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
and such positive bilinear forms are called Riemannian metrics. Their purpose is to measure angles and distances. Thus, duality is a foundational basis of this branch of geometry. Another application of inner product spaces is the Hodge star which provides a correspondence between the elements of the exterior algebra. For an -dimensional vector space, the Hodge star operator maps -forms to -forms. This can be used to formulate Maxwell's equations. In this guise, the duality inherent in the inner product space exchanges the role of
magnetic Magnetism is the class of physical attributes that are mediated by a magnetic field, which refers to the capacity to induce attractive and repulsive phenomena in other entities. Electric currents and the magnetic moments of elementary particle ...
and
electric field An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field fo ...
s.


Duality in projective geometry

In some projective planes, it is possible to find geometric transformations that map each point of the projective plane to a line, and each line of the projective plane to a point, in an incidence-preserving way. For such planes there arises a general principle of duality in projective planes: given any theorem in such a plane projective geometry, exchanging the terms "point" and "line" everywhere results in a new, equally valid theorem. A simple example is that the statement "two points determine a unique line, the line passing through these points" has the dual statement that "two lines determine a unique point, the intersection point of these two lines". For further examples, see Dual theorems. A conceptual explanation of this phenomenon in some planes (notably field planes) is offered by the dual vector space. In fact, the points in the projective plane \mathbb^2 correspond to one-dimensional subvector spaces V \subset \mathbb R^3 while the lines in the projective plane correspond to subvector spaces W of dimension 2. The duality in such projective geometries stems from assigning to a one-dimensional V the subspace of (\mathbb R^3)^* consisting of those linear maps f: \mathbb R^3 \to \mathbb R which satisfy f (V) = 0. As a consequence of the
dimension formula In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordina ...
of linear algebra, this space is two-dimensional, i.e., it corresponds to a line in the projective plane associated to (\mathbb R^3)^*. The (positive definite) bilinear form \langle \cdot , \cdot \rangle : \R^3 \times \R^3 \to \R, \langle x , y \rangle = \sum_^3 x_i y_i yields an identification of this projective plane with the \mathbb^2. Concretely, the duality assigns to V \subset \mathbb R^3 its
orthogonal In mathematics, orthogonality is the generalization of the geometric notion of ''perpendicularity''. By extension, orthogonality is also used to refer to the separation of specific features of a system. The term also has specialized meanings in ...
\left\. The explicit formulas in duality in projective geometry arise by means of this identification.


Topological vector spaces and Hilbert spaces

In the realm of topological vector spaces, a similar construction exists, replacing the dual by the topological dual vector space. There are several notions of topological dual space, and each of them gives rise to a certain concept of duality. A topological vector space X that is canonically isomorphic to its bidual X'' is called a reflexive space: X\cong X''. Examples: * As in the finite-dimensional case, on each
Hilbert space In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natural ...
its inner product defines a map H \to H^*, v \mapsto (w \mapsto \langle w,v \rangle), which is a
bijection In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other s ...
due to the Riesz representation theorem. As a corollary, every Hilbert space is a reflexive Banach space. * The dual normed space of an -space is where provided that , but the dual of is bigger than . Hence is not reflexive. * Distributions are linear functionals on appropriate spaces of functions. They are an important technical means in the theory of
partial differential equation In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a Multivariable calculus, multivariable function. The function is often thought of as an "unknown" to be sol ...
s (PDE): instead of solving a PDE directly, it may be easier to first solve the PDE in the "weak sense", i.e., find a distribution that satisfies the PDE and, second, to show that the solution must, in fact, be a function. All the standard spaces of distributions — '(U), '(\R^n), ^\infty(U)' — are reflexive locally convex spaces.


Further dual objects

The dual lattice of a lattice is given by \operatorname (L, \mathbf), which is used in the construction of toric varieties. The Pontryagin dual of
locally compact In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which ev ...
topological groups ''G'' is given by \operatorname (G, S^1), continuous group homomorphisms with values in the circle (with multiplication of complex numbers as group operation).


Dual categories


Opposite category and adjoint functors

In another group of dualities, the objects of one theory are translated into objects of another theory and the maps between objects in the first theory are translated into morphisms in the second theory, but with direction reversed. Using the parlance of
category theory Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, cate ...
, this amounts to a contravariant functor between two categories and : which for any two objects ''X'' and ''Y'' of ''C'' gives a map That functor may or may not be an equivalence of categories. There are various situations, where such a functor is an equivalence between the opposite category of , and . Using a duality of this type, every statement in the first theory can be translated into a "dual" statement in the second theory, where the direction of all arrows has to be reversed. Therefore, any duality between categories and is formally the same as an equivalence between and ( and ). However, in many circumstances the opposite categories have no inherent meaning, which makes duality an additional, separate concept. A category that is equivalent to its dual is called ''self-dual''. An example of self-dual category is the category of
Hilbert space In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natural ...
s. Many category-theoretic notions come in pairs in the sense that they correspond to each other while considering the opposite category. For example,
Cartesian product In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is : A\ti ...
s and disjoint unions of sets are dual to each other in the sense that and for any set . This is a particular case of a more general duality phenomenon, under which limits in a category correspond to colimits in the opposite category ; further concrete examples of this are epimorphisms vs. monomorphism, in particular factor modules (or groups etc.) vs. submodules,
direct product In mathematics, one can often define a direct product of objects already known, giving a new one. This generalizes the Cartesian product of the underlying sets, together with a suitably defined structure on the product set. More abstractly, one ta ...
s vs. direct sums (also called coproducts to emphasize the duality aspect). Therefore, in some cases, proofs of certain statements can be halved, using such a duality phenomenon. Further notions displaying related by such a categorical duality are projective and injective modules in
homological algebra Homological algebra is the branch of mathematics that studies homology (mathematics), homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precurs ...
,
fibration The notion of a fibration generalizes the notion of a fiber bundle and plays an important role in algebraic topology, a branch of mathematics. Fibrations are used, for example, in postnikov-systems or obstruction theory. In this article, all map ...
s and cofibrations in topology and more generally
model categories In mathematics, particularly in homotopy theory, a model category is a category theory, category with distinguished classes of morphisms ('arrows') called 'weak equivalence (homotopy theory), weak equivalences', 'fibrations' and 'cofibrations' sati ...
. Two functors and are adjoint if for all objects ''c'' in ''C'' and ''d'' in ''D'' in a natural way. Actually, the correspondence of limits and colimits is an example of adjoints, since there is an adjunction between the colimit functor that assigns to any diagram in indexed by some category its colimit and the diagonal functor that maps any object of to the constant diagram which has at all places. Dually,


Spaces and functions

Gelfand duality In mathematics, the Gelfand representation in functional analysis (named after I. M. Gelfand) is either of two things: * a way of representing commutative Banach algebras as algebras of continuous functions; * the fact that for commutative C*-alge ...
is a duality between commutative
C*-algebra In mathematics, specifically in functional analysis, a C∗-algebra (pronounced "C-star") is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra ''A'' of continuous ...
s ''A'' and compact Hausdorff spaces ''X'' is the same: it assigns to ''X'' the space of continuous functions (which vanish at infinity) from ''X'' to C, the complex numbers. Conversely, the space ''X'' can be reconstructed from ''A'' as the spectrum of ''A''. Both Gelfand and Pontryagin duality can be deduced in a largely formal, category-theoretic way. In a similar vein there is a duality in
algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
between
commutative ring In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not sp ...
s and
affine scheme In commutative algebra, the prime spectrum (or simply the spectrum) of a ring ''R'' is the set of all prime ideals of ''R'', and is usually denoted by \operatorname; in algebraic geometry it is simultaneously a topological space equipped with the ...
s: to every commutative ring ''A'' there is an affine spectrum, Spec ''A''. Conversely, given an affine scheme ''S'', one gets back a ring by taking global sections of the
structure sheaf In mathematics, a ringed space is a family of (commutative) rings parametrized by open subsets of a topological space together with ring homomorphisms that play roles of restrictions. Precisely, it is a topological space equipped with a sheaf of r ...
O''S''. In addition, ring homomorphisms are in one-to-one correspondence with morphisms of affine schemes, thereby there is an equivalence : (Commutative rings)op ≅ (affine schemes) Affine schemes are the local building blocks of schemes. The previous result therefore tells that the local theory of schemes is the same as commutative algebra, the study of commutative rings. Noncommutative geometry draws inspiration from Gelfand duality and studies noncommutative C*-algebras as if they were functions on some imagined space. Tannaka–Krein duality is a non-commutative analogue of Pontryagin duality.


Galois connections

In a number of situations, the two categories which are dual to each other are actually arising from partially ordered sets, i.e., there is some notion of an object "being smaller" than another one. A duality that respects the orderings in question is known as a
Galois connection In mathematics, especially in order theory, a Galois connection is a particular correspondence (typically) between two partially ordered sets (posets). Galois connections find applications in various mathematical theories. They generalize the funda ...
. An example is the standard duality in Galois theory mentioned in the introduction: a bigger field extension corresponds—under the mapping that assigns to any extension ''L'' ⊃ ''K'' (inside some fixed bigger field Ω) the Galois group Gal (Ω / ''L'') —to a smaller group. The collection of all open subsets of a topological space ''X'' forms a complete Heyting algebra. There is a duality, known as
Stone duality In mathematics, there is an ample supply of categorical dualities between certain categories of topological spaces and categories of partially ordered sets. Today, these dualities are usually collected under the label Stone duality, since they fo ...
, connecting sober spaces and spatial locales. *
Birkhoff's representation theorem :''This is about lattice theory. For other similarly named results, see Birkhoff's theorem (disambiguation).'' In mathematics, Birkhoff's representation theorem for distributive lattices states that the elements of any finite distributive latti ...
relating distributive lattices and partial orders


Pontryagin duality

Pontryagin duality gives a duality on the category of
locally compact In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which ev ...
abelian groups: given any such group ''G'', the character group :χ(''G'') = Hom (''G'', ''S''1) given by continuous group homomorphisms from ''G'' to the
circle group In mathematics, the circle group, denoted by \mathbb T or \mathbb S^1, is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers. \mathbb T = \ ...
''S''1 can be endowed with the compact-open topology. Pontryagin duality states that the character group is again locally compact abelian and that :''G'' ≅ χ(χ(''G'')). Moreover, discrete groups correspond to compact abelian groups; finite groups correspond to finite groups. On the one hand, Pontryagin is a special case of Gelfand duality. On the other hand, it is the conceptual reason of
Fourier analysis In mathematics, Fourier analysis () is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Josep ...
, see below.


Analytic dualities

In analysis, problems are frequently solved by passing to the dual description of functions and operators.
Fourier transform A Fourier transform (FT) is a mathematical transform that decomposes functions into frequency components, which are represented by the output of the transform as a function of frequency. Most commonly functions of time or space are transformed, ...
switches between functions on a vector space and its dual: \widehat(\xi) := \int_^\infty f(x)\ e^ \, dx, and conversely f(x) = \int_^\infty \widehat(\xi)\ e^ \, d\xi. If ''f'' is an ''L''2-function on R or R''N'', say, then so is \widehat and f(-x) = \widehat(x). Moreover, the transform interchanges operations of multiplication and convolution on the corresponding
function space In mathematics, a function space is a set of functions between two fixed sets. Often, the domain and/or codomain will have additional structure which is inherited by the function space. For example, the set of functions from any set into a vect ...
s. A conceptual explanation of the Fourier transform is obtained by the aforementioned Pontryagin duality, applied to the locally compact groups R (or R''N'' etc.): any character of R is given by ξ ↦ ''e''−2''πixξ''. The dualizing character of Fourier transform has many other manifestations, for example, in alternative descriptions of quantum mechanical systems in terms of coordinate and momentum representations. * Laplace transform is similar to Fourier transform and interchanges operators of multiplication by polynomials with constant coefficient linear differential operators. * Legendre transformation is an important analytic duality which switches between velocities in Lagrangian mechanics and
momenta Momenta is an autonomous driving company headquartered in Beijing, China that aims to build the 'Brains' for autonomous vehicles. In December 2021, Momenta and BYD established a 100 million yuan ($15.7 million) joint venture to deploy autonomous ...
in Hamiltonian mechanics.


Homology and cohomology

Theorems showing that certain objects of interest are the
dual space In mathematics, any vector space ''V'' has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on ''V'', together with the vector space structure of pointwise addition and scalar multiplication by const ...
s (in the sense of linear algebra) of other objects of interest are often called ''dualities''. Many of these dualities are given by a bilinear pairing of two ''K''-vector spaces :''A'' ⊗ ''B'' → ''K''. For perfect pairings, there is, therefore, an isomorphism of ''A'' to the
dual Dual or Duals may refer to: Paired/two things * Dual (mathematics), a notion of paired concepts that mirror one another ** Dual (category theory), a formalization of mathematical duality *** see more cases in :Duality theories * Dual (grammatical ...
of ''B''.


Poincaré duality

Poincaré duality of a smooth compact
complex manifold In differential geometry and complex geometry, a complex manifold is a manifold with an atlas of charts to the open unit disc in \mathbb^n, such that the transition maps are holomorphic. The term complex manifold is variously used to mean a com ...
''X'' is given by a pairing of singular cohomology with C-coefficients (equivalently,
sheaf cohomology In mathematics, sheaf cohomology is the application of homological algebra to analyze the global sections of a sheaf on a topological space. Broadly speaking, sheaf cohomology describes the obstructions to solving a geometric problem globally when i ...
of the
constant sheaf Constant or The Constant may refer to: Mathematics * Constant (mathematics), a non-varying value * Mathematical constant, a special number that arises naturally in mathematics, such as or Other concepts * Control variable or scientific con ...
C) :H''i''(X) ⊗ H2''n''−''i''(X) → C, where ''n'' is the (complex) dimension of ''X''. Poincaré duality can also be expressed as a relation of singular homology and
de Rham cohomology In mathematics, de Rham cohomology (named after Georges de Rham) is a tool belonging both to algebraic topology and to differential topology, capable of expressing basic topological information about smooth manifolds in a form particularly adapte ...
, by asserting that the map :(\gamma, \omega) \mapsto \int_\gamma \omega (integrating a differential ''k''-form over an 2''n''−''k''-(real) -dimensional cycle) is a perfect pairing. Poincaré duality also reverses dimensions; it corresponds to the fact that, if a topological
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
is represented as a cell complex, then the dual of the complex (a higher-dimensional generalization of the planar graph dual) represents the same manifold. In Poincaré duality, this homeomorphism is reflected in an isomorphism of the ''k''th homology group and the (''n'' − ''k'')th cohomology group.


Duality in algebraic and arithmetic geometry

The same duality pattern holds for a smooth
projective variety In algebraic geometry, a projective variety over an algebraically closed field ''k'' is a subset of some projective ''n''-space \mathbb^n over ''k'' that is the zero-locus of some finite family of homogeneous polynomials of ''n'' + 1 variables w ...
over a
separably closed field In mathematics, particularly abstract algebra, an algebraic closure of a field ''K'' is an algebraic extension of ''K'' that is algebraically closed. It is one of many closures in mathematics. Using Zorn's lemmaMcCarthy (1991) p.21Kaplansk ...
, using l-adic cohomology with Q-coefficients instead. This is further generalized to possibly singular varieties, using intersection cohomology instead, a duality called Verdier duality. Serre duality or coherent duality are similar to the statements above, but applies to cohomology of coherent sheaves instead. With increasing level of generality, it turns out, an increasing amount of technical background is helpful or necessary to understand these theorems: the modern formulation of these dualities can be done using derived categories and certain direct and inverse image functors of sheaves (with respect to the classical analytical topology on manifolds for Poincaré duality, l-adic sheaves and the
étale topology In algebraic geometry, the étale topology is a Grothendieck topology on the category of schemes which has properties similar to the Euclidean topology, but unlike the Euclidean topology, it is also defined in positive characteristic. The étale t ...
in the second case, and with respect to coherent sheaves for coherent duality). Yet another group of similar duality statements is encountered in arithmetics: étale cohomology of finite, local and
global field In mathematics, a global field is one of two type of fields (the other one is local field) which are characterized using valuations. There are two kinds of global fields: *Algebraic number field: A finite extension of \mathbb *Global function fi ...
s (also known as Galois cohomology, since étale cohomology over a field is equivalent to
group cohomology In mathematics (more specifically, in homological algebra), group cohomology is a set of mathematical tools used to study groups using cohomology theory, a technique from algebraic topology. Analogous to group representations, group cohomology loo ...
of the (absolute) Galois group of the field) admit similar pairings. The absolute Galois group ''G''(F''q'') of a finite field, for example, is isomorphic to \widehat , the profinite completion of Z, the integers. Therefore, the perfect pairing (for any ''G''-module ''M'') :H''n''(''G'', ''M'') × H1−''n'' (''G'', Hom (''M'', Q/Z)) → Q/Z is a direct consequence of Pontryagin duality of finite groups. For local and global fields, similar statements exist ( local duality and global or Poitou–Tate duality).;


See also

* Adjoint functor *
Autonomous category In mathematics, an autonomous category is a monoidal category where dual objects exist. Definition A ''left'' (resp. ''right'') ''autonomous category'' is a monoidal category where every object has a left (resp. right) dual. An ''autonomous categ ...
* Dual abelian variety *
Dual basis In linear algebra, given a vector space ''V'' with a basis ''B'' of vectors indexed by an index set ''I'' (the cardinality of ''I'' is the dimension of ''V''), the dual set of ''B'' is a set ''B''∗ of vectors in the dual space ''V''∗ with th ...
* Dual (category theory) * Dual code *
Duality (electrical engineering) In electrical engineering, electrical terms are associated into pairs called duals. A dual of a relationship is formed by interchanging voltage and current in an expression. The dual expression thus produced is of the same form, and the reason t ...
* Duality (optimization) *
Dualizing module In abstract algebra, a dualizing module, also called a canonical module, is a module over a commutative ring that is analogous to the canonical bundle of a smooth variety. It is used in Grothendieck local duality. Definition A dualizing module for ...
* Dualizing sheaf * Dual lattice * Dual norm * Dual numbers, a certain
associative algebra In mathematics, an associative algebra ''A'' is an algebraic structure with compatible operations of addition, multiplication (assumed to be associative), and a scalar multiplication by elements in some field ''K''. The addition and multiplic ...
; the term "dual" here is synonymous with ''double'', and is unrelated to the notions given above. * Dual system * Koszul duality * Langlands dual * Linear programming#Duality * List of dualities *
Matlis duality In algebra, Matlis duality is a duality (mathematics), duality between Artinian module, Artinian and Noetherian module, Noetherian module (mathematics), modules over a complete Noetherian local ring. In the special case when the local ring has a fi ...
* Petrie duality * Pontryagin duality * S-duality * T-duality, Mirror symmetry


Notes


References


Duality in general

* Atiyah, Michael (2007)
Duality in Mathematics and Physics
lecture notes from the Institut de Matematica de la Universitat de Barcelona (IMUB). *. *. * (a non-technical overview about several aspects of geometry, including dualities)


Duality in algebraic topology

*James C. Becker and Daniel Henry Gottlieb
A History of Duality in Algebraic Topology


Specific dualities

* . Als

* . Als

* * * * * * * * * * * * * * * * * * {{cite book , last = Edwards , first = R. E. , year = 1965 , title = Functional analysis. Theory and applications , publisher = Holt, Rinehart and Winston , location = New York , isbn = 0030505356 * ja:双対