HOME

TheInfoList



OR:

In
category theory Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, ca ...
, a branch of
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, duality is a correspondence between the properties of a category ''C'' and the dual properties of the
opposite category In category theory, a branch of mathematics, the opposite category or dual category ''C''op of a given category ''C'' is formed by reversing the morphisms, i.e. interchanging the source and target of each morphism. Doing the reversal twice yields t ...
''C''op. Given a statement regarding the category ''C'', by interchanging the
source Source may refer to: Research * Historical document * Historical source * Source (intelligence) or sub source, typically a confidential provider of non open-source intelligence * Source (journalism), a person, publication, publishing institute o ...
and
target Target may refer to: Physical items * Shooting target, used in marksmanship training and various shooting sports ** Bullseye (target), the goal one for which one aims in many of these sports ** Aiming point, in field artillery, fi ...
of each
morphism In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms ...
as well as interchanging the order of composing two morphisms, a corresponding dual statement is obtained regarding the opposite category ''C''op. Duality, as such, is the assertion that truth is invariant under this operation on statements. In other words, if a statement is true about ''C'', then its dual statement is true about ''C''op. Also, if a statement is false about ''C'', then its dual has to be false about ''C''op. Given a
concrete category In mathematics, a concrete category is a category that is equipped with a faithful functor to the category of sets (or sometimes to another category, ''see Relative concreteness below''). This functor makes it possible to think of the objects of t ...
''C'', it is often the case that the opposite category ''C''op per se is abstract. ''C''op need not be a category that arises from mathematical practice. In this case, another category ''D'' is also termed to be in duality with ''C'' if ''D'' and ''C''op are equivalent as categories. In the case when ''C'' and its opposite ''C''op are equivalent, such a category is self-dual.


Formal definition

We define the elementary language of category theory as the two-sorted first order language with objects and morphisms as distinct sorts, together with the relations of an object being the source or target of a morphism and a symbol for composing two morphisms. Let σ be any statement in this language. We form the dual σop as follows: # Interchange each occurrence of "source" in σ with "target". # Interchange the order of composing morphisms. That is, replace each occurrence of g \circ f with f \circ g Informally, these conditions state that the dual of a statement is formed by reversing arrows and
compositions Composition or Compositions may refer to: Arts and literature *Composition (dance), practice and teaching of choreography *Composition (language), in literature and rhetoric, producing a work in spoken tradition and written discourse, to include v ...
. ''Duality'' is the observation that σ is true for some category ''C'' if and only if σop is true for ''C''op.


Examples

* A morphism f\colon A \to B is a
monomorphism In the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from to is often denoted with the notation X\hookrightarrow Y. In the more general setting of category theory, a monomorphism ...
if f \circ g = f \circ h implies g=h. Performing the dual operation, we get the statement that g \circ f = h \circ f implies g=h. For a morphism f\colon B \to A, this is precisely what it means for ''f'' to be an
epimorphism In category theory, an epimorphism (also called an epic morphism or, colloquially, an epi) is a morphism ''f'' : ''X'' → ''Y'' that is right-cancellative in the sense that, for all objects ''Z'' and all morphisms , : g_1 \circ f = g_2 \circ f ...
. In short, the property of being a monomorphism is dual to the property of being an epimorphism. Applying duality, this means that a morphism in some category ''C'' is a monomorphism if and only if the reverse morphism in the opposite category ''C''op is an epimorphism. * An example comes from reversing the direction of inequalities in a
partial order In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary ...
. So if ''X'' is a
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
and ≤ a partial order relation, we can define a new partial order relation ≤new by :: ''x'' ≤new ''y'' if and only if ''y'' ≤ ''x''. This example on orders is a special case, since partial orders correspond to a certain kind of category in which Hom(''A'',''B'') can have at most one element. In applications to logic, this then looks like a very general description of negation (that is, proofs run in the opposite direction). For example, if we take the opposite of a
lattice Lattice may refer to: Arts and design * Latticework, an ornamental criss-crossed framework, an arrangement of crossing laths or other thin strips of material * Lattice (music), an organized grid model of pitch ratios * Lattice (pastry), an orna ...
, we will find that ''meets'' and ''joins'' have their roles interchanged. This is an abstract form of
De Morgan's laws In propositional logic and Boolean algebra, De Morgan's laws, also known as De Morgan's theorem, are a pair of transformation rules that are both valid rules of inference. They are named after Augustus De Morgan, a 19th-century British math ...
, or of duality applied to lattices. *
Limits Limit or Limits may refer to: Arts and media * ''Limit'' (manga), a manga by Keiko Suenobu * ''Limit'' (film), a South Korean film * Limit (music), a way to characterize harmony * "Limit" (song), a 2016 single by Luna Sea * "Limits", a 2019 ...
and
colimits In category theory, a branch of mathematics, the abstract notion of a limit captures the essential properties of universal constructions such as products, pullbacks and inverse limits. The dual notion of a colimit generalizes constructions s ...
are dual notions. *
Fibration The notion of a fibration generalizes the notion of a fiber bundle and plays an important role in algebraic topology, a branch of mathematics. Fibrations are used, for example, in postnikov-systems or obstruction theory. In this article, all ma ...
s and cofibrations are examples of dual notions in
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify ...
and
homotopy theory In mathematics, homotopy theory is a systematic study of situations in which maps can come with homotopies between them. It originated as a topic in algebraic topology but nowadays is studied as an independent discipline. Besides algebraic topolo ...
. In this context, the duality is often called
Eckmann–Hilton duality In the mathematical disciplines of algebraic topology and homotopy theory, Eckmann–Hilton duality in its most basic form, consists of taking a given diagram for a particular concept and reversing the direction of all arrows, much as in cat ...
.


See also

* Dual object *
Duality (mathematics) In mathematics, a duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one fashion, often (but not always) by means of an involution operation: if the dual of is , then th ...
*
Opposite category In category theory, a branch of mathematics, the opposite category or dual category ''C''op of a given category ''C'' is formed by reversing the morphisms, i.e. interchanging the source and target of each morphism. Doing the reversal twice yields t ...
*
Adjoint functor In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are kno ...


References

* * * * * {{Category theory Category theory
Category theory Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, ca ...