HOME

TheInfoList



OR:

In biological taxonomy, a domain ( or ) (
Latin Latin (, or , ) is a classical language belonging to the Italic languages, Italic branch of the Indo-European languages. Latin was originally a dialect spoken in the lower Tiber area (then known as Latium) around present-day Rome, but through ...
: ''regio''), also dominion, superkingdom, realm, or empire, is the highest
taxonomic rank In biological classification, taxonomic rank is the relative level of a group of organisms (a taxon) in an ancestral or hereditary hierarchy. A common system consists of species, genus, family, order, class, phylum, kingdom, domain. While ...
of all
organism In biology, an organism () is any living system that functions as an individual entity. All organisms are composed of cells ( cell theory). Organisms are classified by taxonomy into groups such as multicellular animals, plants, and fu ...
s taken together. It was introduced in the three-domain system of taxonomy devised by Carl Woese, Otto Kandler and Mark Wheelis in 1990. According to the domain system, the tree of life consists of either three domains such as Archaea, Bacteria, and Eukarya, or two domains consisting of Archaea and Bacteria, with Eukarya included in Archaea. The first two are all
prokaryote A prokaryote () is a single-celled organism that lacks a nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Greek πρό (, 'before') and κάρυον (, 'nut' or 'kernel').Campbell, N. "Biology:Concepts & Con ...
s, single-celled
microorganism A microorganism, or microbe,, ''mikros'', "small") and ''organism'' from the el, ὀργανισμός, ''organismós'', "organism"). It is usually written as a single word but is sometimes hyphenated (''micro-organism''), especially in old ...
s without a membrane-bound
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: * Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucl ...
. All
organism In biology, an organism () is any living system that functions as an individual entity. All organisms are composed of cells ( cell theory). Organisms are classified by taxonomy into groups such as multicellular animals, plants, and fu ...
s that have a cell nucleus and other membrane-bound organelles are included in Eukarya. Non-cellular life is not included in this system. Alternatives to the three-domain system include the earlier two-empire system (with the empires Prokaryota and Eukaryota), and the eocyte hypothesis (with two domains of Bacteria and Archaea, with Eukarya included as a branch of Archaea).


Terminology

The term ''domain'' was proposed by Carl Woese, Otto Kandler, and Mark Wheelis (1990) in a three-domain system. This term represents a synonym for the category of dominion (Lat. ''dominium''), introduced by
Moore Moore may refer to: People * Moore (surname) ** List of people with surname Moore * Moore Crosthwaite (1907–1989), a British diplomat and ambassador * Moore Disney (1765–1846), a senior officer in the British Army * Moore Powell (died c. 1 ...
in 1974.


Development of the Domain System

Carolus Linnaeus made the classification of domain popular in the famous taxonomy system he created in the middle of the
eighteenth century The 18th century lasted from January 1, 1701 ( MDCCI) to December 31, 1800 ( MDCCC). During the 18th century, elements of Enlightenment thinking culminated in the American, French, and Haitian Revolutions. During the century, slave tr ...
. This system was further improved by the studies of
Charles Darwin Charles Robert Darwin ( ; 12 February 1809 – 19 April 1882) was an English naturalist, geologist, and biologist, widely known for his contributions to evolutionary biology. His proposition that all species of life have descended ...
later on but failed to properly classify the domain, Bacteria, due to it having very few observable features to compare to the other domains. Carl Woese made a revolutionary breakthrough when, in 1977, he compared the
nucleotide Nucleotides are organic molecules consisting of a nucleoside and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecu ...
sequences of the 16s ribosomal RNA and discovered that the rank, domain, contained three branches; not two like scientists had previously thought. Initially, due to their physical similarities, Archaea and Bacteria were classified together and called "archaebacteria". However, scientists now know that these two domains are hardly similar and are internally wildly different.


Characteristics of the three domains

Each of these three domains contains unique ribosomal RNA. This forms the basis of the three-domain system. While the presence of a nuclear membrane differentiates the Eukarya from the Archaea and Bacteria, both of which lack a nuclear envelope, the Archaea and Bacteria are distinct from each other differences in the
biochemistry Biochemistry or biological chemistry is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology and ...
of their
cell membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (t ...
s and RNA markers.


Archaea

Archaea are prokaryotic cells, typically characterized by membrane lipids that are branched
hydrocarbon In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons are examples of group 14 hydrides. Hydrocarbons are generally colourless and hydrophobic, and their odors are usually weak or ...
chains attached to glycerol by ether linkages. The presence of these ether linkages in Archaea adds to their ability to withstand extreme temperatures and highly acidic conditions, but many archaea live in mild environments. Halophiles, organisms that thrive in highly salty environments, and
hyperthermophiles A hyperthermophile is an organism that thrives in extremely hot environments—from 60 °C (140 °F) upwards. An optimal temperature for the existence of hyperthermophiles is often above 80 °C (176 °F). Hyperthermophiles are often within the doma ...
, organisms that thrive in extremely hot environments, are examples of Archaea. Archaea evolved many cell sizes, but all are relatively small. Their size ranges from 0.1 μm to 15 μm diameter and up to 200 μm long. They are about the size of bacteria, or similar in size to the mitochondria found in eukaryotic cells. Members of the genus Thermoplasma are the smallest of the Archaea.


Bacteria

Cyanobacteria and mycoplasmas are two examples of bacteria. Even though bacteria are prokaryotic cells just like Archaea, their cell membranes are instead made of
phospholipid bilayers The lipid bilayer (or phospholipid bilayer) is a thin polar membrane made of two layers of lipid molecules. These membranes are flat sheets that form a continuous barrier around all cells. The cell membranes of almost all organisms and many vir ...
. Bacteria cell membranes are distinct from Archean membranes: They characteristically have none of the ether linkages that Archaea have. Internally, bacteria have different RNA structures in their ribosomes, hence they are grouped into a different category. In the two- and three-domain systems, this puts them into a separate domain. There is a great deal of diversity in the domain Bacteria. That diversity is further confounded by exchange of genes between different bacterial lineages. The occurrence of duplicate genes between otherwise distantly-related bacteria makes it nearly impossible to distinguish bacterial species, or count the bacterial species on the Earth, or to organize them into a tree-like structure (unless the structure includes cross-connections between branches, making it a "network" instead of a "tree").


Eukarya

Members of the domain Eukarya – called ''eukaryotes'' – have membrane-bound organelles (including a nucleus containing genetic material) and are represented by five kingdoms: Plantae, Protozoa, Animalia, Chromista, and
Fungi A fungus ( : fungi or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as a kingdom, separately fr ...
.


Exclusion of viruses and prions

The three-domain system does not include any form of non-cellular
life Life is a quality that distinguishes matter that has biological processes, such as signaling and self-sustaining processes, from that which does not, and is defined by the capacity for growth, reaction to stimuli, metabolism, energy ...
. Stefan Luketa proposed a five-domain system in 2012, adding Prionobiota (acellular and without nucleic acid) and
Virus A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Since Dmitri Ivanovsk ...
obiota (acellular but with nucleic acid) to the traditional three domains.


Alternative classifications

Alternative classifications of life include: * The two-empire system or superdomain system, proposed by Mayr (1998), with top-level groupings of Prokaryota (or Monera) and Eukaryota. * The eocyte hypothesis, proposed by Lake ''et al''. (1984), which posits two domains: Bacteria and Archaea, with Eukaryota included as a subordinate clade branching from Archaea.


See also

*
Biological dark matter Biological dark matter is an informal term for unclassified or poorly understood genetic material. This genetic material may refer to genetic material produced by unclassified microorganisms. By extension, biological dark matter may also refer to ...
*
Neomura Neomura is a possible clade composed of the two domains of life of Archaea and Eukaryota. The group was named by Thomas Cavalier-Smith in 2002. Its name means "new walls", reflecting his hypothesis that it evolved from Bacteria, and one of t ...
, which is the two domains of life of Archaea and Eukaryota * Phylogenetics * Protein structure * Realm (virology), an equivalent rank for non-cellular life * Systematics


References


External links

* {{Portal bar, Biology, Evolutionary biology, Science