HOME

TheInfoList



OR:

In
arithmetic Arithmetic () is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers— addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th ...
, Euclidean division – or division with remainder – is the process of dividing one
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the languag ...
(the dividend) by another (the divisor), in a way that produces an integer
quotient In arithmetic, a quotient (from lat, quotiens 'how many times', pronounced ) is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics, and is commonly referred to as the integer part of a ...
and a natural number
remainder In mathematics, the remainder is the amount "left over" after performing some computation. In arithmetic, the remainder is the integer "left over" after dividing one integer by another to produce an integer quotient ( integer division). In algeb ...
strictly smaller than the
absolute value In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), ...
of the divisor. A fundamental property is that the quotient and the remainder exist and are unique, under some conditions. Because of this uniqueness, ''Euclidean division'' is often considered without referring to any method of computation, and without explicitly computing the quotient and the remainder. The methods of computation are called integer division algorithms, the best known of which being
long division In arithmetic, long division is a standard division algorithm suitable for dividing multi-digit Hindu-Arabic numerals (Positional notation) that is simple enough to perform by hand. It breaks down a division problem into a series of easier steps ...
. Euclidean division, and algorithms to compute it, are fundamental for many questions concerning integers, such as the
Euclidean algorithm In mathematics, the Euclidean algorithm,Some widely used textbooks, such as I. N. Herstein's ''Topics in Algebra'' and Serge Lang's ''Algebra'', use the term "Euclidean algorithm" to refer to Euclidean division or Euclid's algorithm, is an e ...
for finding the
greatest common divisor In mathematics, the greatest common divisor (GCD) of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers ''x'', ''y'', the greatest common divisor of ''x'' and ''y'' is ...
of two integers, and
modular arithmetic In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his boo ...
, for which only remainders are considered. The operation consisting of computing only the remainder is called the ''
modulo operation In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another (called the '' modulus'' of the operation). Given two positive numbers and , modulo (often abbreviated as ) is ...
'', and is used often in both mathematics and computer science.


Division theorem

Euclidean division is based on the following result, which is sometimes called Euclid's division lemma. Given two integers and , with , there exist unique integers and such that : and :, where denotes the
absolute value In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), ...
of . In the above theorem, each of the four integers has a name of its own: is called the , is called the , is called the and is called the . The computation of the quotient and the remainder from the dividend and the divisor is called or — in case of ambiguity — . The theorem is frequently referred to as the (although it is a theorem and not an algorithm), because its proof as given below lends itself to a simple division algorithm for computing and (see the section
Proof Proof most often refers to: * Proof (truth), argument or sufficient evidence for the truth of a proposition * Alcohol proof, a measure of an alcoholic drink's strength Proof may also refer to: Mathematics and formal logic * Formal proof, a c ...
for more). Division is not defined in the case where ; see
division by zero In mathematics, division by zero is division where the divisor (denominator) is zero. Such a division can be formally expressed as \tfrac, where is the dividend (numerator). In ordinary arithmetic, the expression has no meaning, as there is ...
. For the remainder and the
modulo operation In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another (called the '' modulus'' of the operation). Given two positive numbers and , modulo (often abbreviated as ) is ...
, there are conventions other than , see .


History

Although "Euclidean division" is named after
Euclid Euclid (; grc-gre, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the '' Elements'' treatise, which established the foundations of ...
, it seems that he did not know the existence and uniqueness theorem, and that the only computation method that he knew was the division by repeated subtraction. Before the discovery of
Hindu–Arabic numeral system The Hindu–Arabic numeral system or Indo-Arabic numeral system Audun HolmeGeometry: Our Cultural Heritage 2000 (also called the Hindu numeral system or Arabic numeral system) is a positional decimal numeral system, and is the most common syste ...
, which was introduced in Europe during the 13th century by
Fibonacci Fibonacci (; also , ; – ), also known as Leonardo Bonacci, Leonardo of Pisa, or Leonardo Bigollo Pisano ('Leonardo the Traveller from Pisa'), was an Italian mathematician from the Republic of Pisa, considered to be "the most talented Wester ...
, division was extremely difficult, and only the best mathematicians were able to do it. Presently, most
division algorithm A division algorithm is an algorithm which, given two integers N and D, computes their quotient and/or remainder, the result of Euclidean division. Some are applied by hand, while others are employed by digital circuit designs and software. Div ...
s, including
long division In arithmetic, long division is a standard division algorithm suitable for dividing multi-digit Hindu-Arabic numerals (Positional notation) that is simple enough to perform by hand. It breaks down a division problem into a series of easier steps ...
, are based on this notation or its variants, such as
binary numeral A binary number is a number expressed in the base-2 numeral system or binary numeral system, a method of mathematical expression which uses only two symbols: typically "0" (zero) and "1" (one). The base-2 numeral system is a positional notatio ...
s. A notable exception is
Newton–Raphson division A division algorithm is an algorithm which, given two integers N and D, computes their quotient and/or remainder, the result of Euclidean division. Some are applied by hand, while others are employed by digital circuit designs and software. Divis ...
, which is independent from any
numeral system A numeral system (or system of numeration) is a writing system for expressing numbers; that is, a mathematical notation for representing numbers of a given set, using digits or other symbols in a consistent manner. The same sequence of symbo ...
. The term "Euclidean division" was introduced during the 20th century as a shorthand for "division of
Euclidean ring In mathematics, more specifically in ring theory, a Euclidean domain (also called a Euclidean ring) is an integral domain that can be endowed with a Euclidean function which allows a suitable generalization of the Euclidean division of integer ...
s". It has been rapidly adopted by mathematicians for distinguishing this division from the other kinds of
division Division or divider may refer to: Mathematics *Division (mathematics), the inverse of multiplication *Division algorithm, a method for computing the result of mathematical division Military *Division (military), a formation typically consisting ...
of numbers.


Intuitive example

Suppose that a pie has 9 slices and they are to be divided evenly among 4 people. Using Euclidean division, 9 divided by 4 is 2 with remainder 1. In other words, each person receives 2 slices of pie, and there is 1 slice left over. This can be confirmed using multiplication, the inverse of division: if each of the 4 people received 2 slices, then 4 × 2 = 8 slices were given out in total. Adding the 1 slice remaining, the result is 9 slices. In summary: 9 = 4 × 2 + 1. In general, if the number of slices is denoted a and the number of people is denoted ''b'', then one can divide the pie evenly among the people such that each person receives ''q'' slices (the quotient), with some number of slices r < b being the leftover (the remainder). In which case, the equation a = bq + r holds. If 9 slices were divided among 3 people instead of 4, then each would receive 3 and no slice would be left over, which means that the remainder would be zero, leading to the conclusion that 3 ''evenly divides'' 9, or that 3 ''
divides In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a multiple of m. An integer n is divisible or evenly divisible b ...
'' 9. Euclidean division can also be extended to negative dividend (or negative divisor) using the same formula; for example −9 = 4 × (−3) + 3, which means that −9 divided by 4 is −3 with remainder 3.


Examples

*If ''a'' = 7 and ''b'' = 3, then ''q'' = 2 and ''r'' = 1, since 7 = 3 × 2 + 1. *If ''a'' = 7 and ''b'' = −3, then ''q'' = −2 and ''r'' = 1, since 7 = −3 × (−2) + 1. *If ''a'' = −7 and ''b'' = 3, then ''q'' = −3 and ''r'' = 2, since −7 = 3 × (−3) + 2. *If ''a'' = −7 and ''b'' = −3, then ''q'' = 3 and ''r'' = 2, since −7 = −3 × 3 + 2.


Proof

The following proof of the division theorem relies on the fact that a decreasing sequence of non-negative integers stops eventually. It is separated into two parts: one for existence and another for uniqueness of ''q'' and ''r''. Other proofs use the
well-ordering principle In mathematics, the well-ordering principle states that every non-empty set of positive integers contains a least element. In other words, the set of positive integers is well-ordered by its "natural" or "magnitude" order in which x precedes y ...
(i.e., the assertion that every
non-empty set In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other ...
of non-negative integers has a smallest element) to make the reasoning simpler, but have the disadvantage of not providing directly an algorithm for solving the division (see for more).


Existence

Consider first the case . Setting and , the equation may be rewritten as and the inequality may be rewritten as . This reduces the existence for the case to that of the case . Similarly, if and , setting , , and , the equation may be rewritten as , and the inequality may be rewritten as . Thus the proof of the existence is reduced to the case and — which will be considered in the remainder of the proof. Let and , then these are non-negative numbers such that . If then the division is complete, so suppose . Then defining and , one has with . As there are only non-negative integers less than , one only needs to repeat this process at most times to reach the final quotient and the remainder. That is, there exist a natural number such that and . This proves the existence and also gives a simple
division algorithm A division algorithm is an algorithm which, given two integers N and D, computes their quotient and/or remainder, the result of Euclidean division. Some are applied by hand, while others are employed by digital circuit designs and software. Div ...
for computing the quotient and the remainder. However, this algorithm is not efficient, since its number of steps is of the order of .


Uniqueness

The pair of integers and such that is unique, in the sense that there can no be other pair of integers that satisfy the same condition in the Euclidean division theorem. In other words, if we have another division of by , say with , then we must have that :. To prove this statement, we first start with the assumptions that : : : : Subtracting the two equations yields :. So is a divisor of . As : by the above inequalities, one gets :, and :. Since , we get that and , which proves the uniqueness part of the Euclidean division theorem.


Effectiveness

In general, an existence proof does not provide an algorithm for computing the existing quotient and remainder, but the above proof does immediately provide an algorithm (see Division algorithm#Division by repeated subtraction), even though it is not a very efficient one as it requires as many steps as the size of the quotient. This is related to the fact that it uses only additions, subtractions and comparisons of integers, without involving multiplication, nor any particular representation of the integers such as decimal notation. In terms of decimal notation,
long division In arithmetic, long division is a standard division algorithm suitable for dividing multi-digit Hindu-Arabic numerals (Positional notation) that is simple enough to perform by hand. It breaks down a division problem into a series of easier steps ...
provides a much more efficient algorithm for solving Euclidean divisions. Its generalization to binary and
hexadecimal In mathematics and computing, the hexadecimal (also base-16 or simply hex) numeral system is a positional numeral system that represents numbers using a radix (base) of 16. Unlike the decimal system representing numbers using 10 symbols, he ...
notation provides further flexibility and possibility for computer implementation. However, for large inputs, algorithms that reduce division to multiplication, such as
Newton–Raphson In numerical analysis, Newton's method, also known as the Newton–Raphson method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-va ...
, are usually preferred, because they only need a time which is proportional to the time of the multiplication needed to verify the result—independently of the multiplication algorithm which is used (for more, see Division algorithm#Fast division methods).


Variants

The Euclidean division admits a number of variants, some of which are listed below.


Other intervals for the remainder

In Euclidean division with as divisor, the remainder is supposed to belong to the interval of length . Any other interval of the same length may be used. More precisely, given integers m, a, d with m>0, there exist unique integers q and r with d \le r < m+d such that a = mq+r. In particular, if d=- \left\lfloor \frac \right\rfloor then - \left\lfloor \frac \right\rfloor \le r < m-\left\lfloor \frac \right\rfloor . This division is called the ''centered division'', and its remainder r is called the ''centered remainder'' or the least absolute remainder''. This is used for approximating
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
s: Euclidean division defines
truncation In mathematics and computer science, truncation is limiting the number of digits right of the decimal point. Truncation and floor function Truncation of positive real numbers can be done using the floor function. Given a number x \in \mathb ...
, and centered division defines
rounding Rounding means replacing a number with an approximate value that has a shorter, simpler, or more explicit representation. For example, replacing $ with $, the fraction 312/937 with 1/3, or the expression with . Rounding is often done to ob ...
.


Montgomery division

Given integers a, m and R, with m >0 and \gcd(R,m) =1, let R^ be the
modular multiplicative inverse In mathematics, particularly in the area of arithmetic, a modular multiplicative inverse of an integer is an integer such that the product is congruent to 1 with respect to the modulus .. In the standard notation of modular arithmetic this congr ...
of R (i.e., 0 with R^R-1 being a multiple of m), then there exist unique integers q and r with 0 \le r < m such that a = mq+R^ \cdot r . This result generalizes Hensel's odd division (1900). The value r is the -residue defined in
Montgomery reduction In modular arithmetic computation, Montgomery modular multiplication, more commonly referred to as Montgomery multiplication, is a method for performing fast modular multiplication. It was introduced in 1985 by the American mathematician Peter L. ...
.


In Euclidean domains

Euclidean domain In mathematics, more specifically in ring theory, a Euclidean domain (also called a Euclidean ring) is an integral domain that can be endowed with a Euclidean function which allows a suitable generalization of the Euclidean division of integers ...
s (also known as Euclidean rings) are defined as
integral domain In mathematics, specifically abstract algebra, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural s ...
s which support the following generalization of Euclidean division: :Given an element and a non-zero element in a Euclidean domain equipped with a Euclidean function (also known as a Euclidean valuation or degree function), there exist and in such that and either or . Uniqueness of and is not required. It occurs only in exceptional cases, typically for
univariate polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An ex ...
s, and for integers, if the further condition is added. Examples of Euclidean domains include fields,
polynomial ring In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variables ...
s in one variable over a field, and the
Gaussian integers In number theory, a Gaussian integer is a complex number whose real and imaginary parts are both integers. The Gaussian integers, with ordinary addition and multiplication of complex numbers, form an integral domain, usually written as \mathbf /ma ...
. The Euclidean division of polynomials has been the object of specific developments.


See also

*
Euclid's lemma In algebra and number theory, Euclid's lemma is a lemma that captures a fundamental property of prime numbers, namely: For example, if , , , then , and since this is divisible by 19, the lemma implies that one or both of 133 or 143 must be as we ...
*
Euclidean algorithm In mathematics, the Euclidean algorithm,Some widely used textbooks, such as I. N. Herstein's ''Topics in Algebra'' and Serge Lang's ''Algebra'', use the term "Euclidean algorithm" to refer to Euclidean division or Euclid's algorithm, is an e ...


Notes


References

* * {{DEFAULTSORT:Division Algorithm Articles containing proofs Division (mathematics)