distributive category
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a
category Category, plural categories, may refer to: Philosophy and general uses * Categorization, categories in cognitive science, information science and generally *Category of being * ''Categories'' (Aristotle) *Category (Kant) *Categories (Peirce) * ...
is distributive if it has finite
product Product may refer to: Business * Product (business), an item that serves as a solution to a specific consumer problem. * Product (project management), a deliverable or set of deliverables that contribute to a business solution Mathematics * Produ ...
s and finite
coproduct In category theory, the coproduct, or categorical sum, is a construction which includes as examples the disjoint union of sets and of topological spaces, the free product of groups, and the direct sum of modules and vector spaces. The coprodu ...
s and such that for every choice of
objects Object may refer to: General meanings * Object (philosophy), a thing, being, or concept ** Object (abstract), an object which does not exist at any particular time or place ** Physical object, an identifiable collection of matter * Goal, an ...
A,B,C, the canonical map : mathit_A \times\iota_1, \mathit_A \times\iota_2: A\!\times\!B \,+ A\!\times\!C \to A\!\times\!(B+C) is an
isomorphism In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is ...
, and for all objects A, the canonical map 0 \to A\times 0 is an isomorphism (where 0 denotes the
initial object In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element): ...
). Equivalently, if for every object A the
endofunctor In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and ma ...
A \times - defined by B\mapsto A\times B preserves coproducts up to isomorphisms f. It follows that f and aforementioned canonical maps are equal for each choice of objects. In particular, if the
functor In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) ar ...
A \times - has a right
adjoint In mathematics, the term ''adjoint'' applies in several situations. Several of these share a similar formalism: if ''A'' is adjoint to ''B'', then there is typically some formula of the type :(''Ax'', ''y'') = (''x'', ''By''). Specifically, adjoin ...
(i.e., if the category is
cartesian closed In category theory, a category is Cartesian closed if, roughly speaking, any morphism defined on a product of two objects can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in math ...
), it necessarily preserves all
colimit In category theory, a branch of mathematics, the abstract notion of a limit captures the essential properties of universal constructions such as products, pullbacks and inverse limits. The dual notion of a colimit generalizes constructions such ...
s, and thus any cartesian closed category with finite coproducts (i.e., any
bicartesian closed category In category theory, a Category (mathematics), category is Cartesian closed if, roughly speaking, any morphism defined on a product (category theory), product of two Object (category theory), objects can be naturally identified with a morphism defin ...
) is distributive.


Example

The
category of sets In the mathematical field of category theory, the category of sets, denoted as Set, is the category whose objects are sets. The arrows or morphisms between sets ''A'' and ''B'' are the total functions from ''A'' to ''B'', and the composition of m ...
is distributive. Let , , and be sets. Then :\begin A\times (B\amalg C) &= \ \\ &\cong \ \amalg \ \\ &= (A \times B) \amalg (A \times C) \end where \amalg denotes the coproduct in Set, namely the
disjoint union In mathematics, a disjoint union (or discriminated union) of a family of sets (A_i : i\in I) is a set A, often denoted by \bigsqcup_ A_i, with an injection of each A_i into A, such that the images of these injections form a partition of A (th ...
, and \cong denotes a
bijection In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other s ...
. In the case where , , and are
finite set In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example, :\ is a finite set with five elements. Th ...
s, this result reflects the
distributive property In mathematics, the distributive property of binary operations generalizes the distributive law, which asserts that the equality x \cdot (y + z) = x \cdot y + x \cdot z is always true in elementary algebra. For example, in elementary arithmetic, ...
: the above sets each have
cardinality In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized ...
, A, \cdot (, B, +, C, )=, A, \cdot, B, + , A, \cdot, C, . The categories Grp and Ab are not distributive, even though they have both products and coproducts. An even simpler category that has both products and coproducts but is not distributive is the category of
pointed set In mathematics, a pointed set (also based set or rooted set) is an ordered pair (X, x_0) where X is a set and x_0 is an element of X called the base point, also spelled basepoint. Maps between pointed sets (X, x_0) and (Y, y_0) – called based ma ...
s.


References


Further reading

* * Category theory {{categorytheory-stub