HOME

TheInfoList



OR:

A diplexer is a passive device that implements frequency-domain multiplexing. Two
ports A port is a maritime facility comprising one or more wharves or loading areas, where ships load and discharge cargo and passengers. Although usually situated on a sea coast or estuary, ports can also be found far inland, such as H ...
(e.g., L and H) are multiplexed onto a third port (e.g., S). The signals on ports L and H occupy disjoint frequency bands. Consequently, the signals on L and H can coexist on port S without interfering with each other. Typically, the signal on port L will occupy a single low frequency band and the signal on port H will occupy a higher frequency band. In that situation, the diplexer consists of a lowpass filter connecting ports L and S and high pass filter connecting ports H and S. Ideally, all the lowband signal power on port L is transferred to the S port and vice versa. All the highband signal power on port H is transferred to port S and vice versa. Ideally, the separation of the signals is complete. None of the low band signal is transferred from the L port to the H port. In the real world, some power will be lost, and some signal power will leak to the wrong port. The diplexer, being a passive device, is normally reciprocal: the device itself doesn't have a notion of input or output. However poorly designed diplexers may have differing impedance on various ports, so it should not simply be assumed that any such device is fully reciprocal unless it is stated or the return loss measured. The diplexer is a different device than a passive combiner or splitter. The ports of a diplexer are frequency selective; the ports of a combiner are not. There is also a power "loss" difference - a combiner takes all the power delivered to the S port and equally divides it between the A and B ports. A diplexer does not. A diplexer frequency multiplexes two ports onto one port, but more than two ports may be multiplexed. A three-port to one-port multiplexer is known as a triplexer, and a four-port to one-port multiplexer is a quadplexer or quadruplexer. A typical diplexer may have around 30 dB isolation between its L and H ports. That isolation is sufficient for many applications, but it is insufficient to allow simultaneous reception and transmission on one antenna. If the transmitter emits 1 kW, then 1 W of that signal would appear at the receiver; that 1 W may be enough power to overload the receiver. Diplexers designed for simultaneous reception and transmission have more stringent isolation requirements and are known as
duplexer A duplexer is an electronic device that allows bi-directional ( duplex) communication over a single path. In radar and radio communications systems, it isolates the receiver from the transmitter while permitting them to share a common antenna. ...
s.


Common uses

A diplexer allows two different devices to share a common communications channel. Typically, the channel is a long coaxial cable, and a diplexer is often used at both ends of the coaxial cable. The plan is feasible if the two devices operate on different frequencies. The plan is economical if the diplexers cost less than running a second cable. Diplexers are typically used with radio receivers or transmitters on different, widely separated, frequency bands. A single city radio tower might have a police department antenna on 460 MHz and a fire department antenna on 156 MHz. A diplexer at the top combines the two antenna signals to the single coaxial feedline, and a second identical diplexer inside the building separates the feedline signals to the two dispatch radios. Some diplexers support as many as four antennas or radios that work on different radio bands. Diplexers are also commonly used where a multi-band antenna is used on a tower, with a common feedline. The diplexer will split the two bands inside the building (such as VHF and UHF systems combined with a diplexer onto a common antenna).


Industrial applications

Diplexing is used to prevent
intermodulation Intermodulation (IM) or intermodulation distortion (IMD) is the amplitude modulation of signals containing two or more different frequencies, caused by nonlinearities or time variance in a system. The intermodulation between frequency comp ...
and keep reflected power (
VSWR In radio engineering and telecommunications, standing wave ratio (SWR) is a measure of impedance matching of loads to the characteristic impedance of a transmission line or waveguide. Impedance mismatches result in standing waves along the transm ...
) to a minimum for each input transmitter and
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is e ...
. While diplexers can combine a relatively wide
bandwidth Bandwidth commonly refers to: * Bandwidth (signal processing) or ''analog bandwidth'', ''frequency bandwidth'', or ''radio bandwidth'', a measure of the width of a frequency range * Bandwidth (computing), the rate of data transfer, bit rate or thr ...
, the major limitation comes with the antenna itself, which must be sufficiently
wideband In communications, a system is wideband when the message bandwidth significantly exceeds the coherence bandwidth of the channel. Some communication links have such a high data rate that they are forced to use a wide bandwidth; other links may ...
to accept all of the
signal In signal processing, a signal is a function that conveys information about a phenomenon. Any quantity that can vary over space or time can be used as a signal to share messages between observers. The '' IEEE Transactions on Signal Processing' ...
s being passed through it, and transfer them to the
air The atmosphere of Earth is the layer of gases, known collectively as air, retained by Earth's gravity that surrounds the planet and forms its planetary atmosphere. The atmosphere of Earth protects life on Earth by creating pressure allowing for ...
efficiently. Typically with a multi-band antenna the frequencies in use will bear an odd harmonic relationship to each other to take advantage of natural harmonic resonances (such as 145/435 MHz), making a highly efficient multi-band antenna. Other times tuned traps will be used, which is less efficient and generally not a technique used at VHF/UHF. Many other large UHF-/VHF-transmitters use diplexers. The number of transmitters which can share an antenna is restricted by the spacing of their frequency bands. Transmitters whose frequencies are too close together cannot be combined successfully by a diplexer. Diplexers are also used at medium wave broadcasting stations. However their use is not that common in this frequency range because the corresponding wavelength varies much more across the medium wave band than across the FM band and so it is more practicable to use a separate antenna for each frequency: medium wave transmission sites usually broadcast only on one to four frequencies, while FM-broadcasting sites often uses four and more frequencies. Diplexers may be used as a back-up device. An example is maintenance work at one antenna of a medium wave transmission site that has two antennas transmitting on two frequencies. Then the other antenna can be used for broadcasting both channels. If it is not possible to build a second antenna for the second transmitter due to space constraints, then the diplexer is used permanently. At long wave broadcasting sites diplexers are normally not used since these stations usually broadcast on only one frequency. A realization of diplexers for long wave broadcasting stations may be difficult, as the ratio of bandwidth (9 kHz) to transmission frequency is high. Diplexers are not used at VLF transmitters. In this frequency range their realization is very difficult because of the very high voltages that occur in the huge tuned loading coils that are used in the antenna feed. Diplexers are also used for non-
broadcast Broadcasting is the distribution of audio or video content to a dispersed audience via any electronic mass communications medium, but typically one using the electromagnetic spectrum (radio waves), in a one-to-many model. Broadcasting began wi ...
applications such as
amateur radio Amateur radio, also known as ham radio, is the use of the radio frequency spectrum for purposes of non-commercial exchange of messages, wireless experimentation, self-training, private recreation, radiosport, contesting, and emergency comm ...
.


Residential

Diplexers are also used in the home to allow a direct broadcast
satellite TV Satellite television is a service that delivers television programming to viewers by relaying it from a communications satellite orbiting the Earth directly to the viewer's location. The signals are received via an outdoor parabolic antenna commo ...
dish antenna A parabolic antenna is an antenna that uses a parabolic reflector, a curved surface with the cross-sectional shape of a parabola, to direct the radio waves. The most common form is shaped like a dish and is popularly called a dish antenna or pa ...
and a
terrestrial TV Terrestrial television or over-the-air television (OTA) is a type of television broadcasting in which the signal transmission occurs via radio waves from the terrestrial (Earth-based) transmitter of a TV station to a TV receiver having an an ...
antenna (local broadcast channels) to share one
coaxial cable Coaxial cable, or coax (pronounced ) is a type of electrical cable consisting of an inner conductor surrounded by a concentric conducting shield, with the two separated by a dielectric ( insulating material); many coaxial cables also have a ...
. The dish antenna occupies the high frequencies (typically 950 to 1450 MHz), and the TV antenna uses lower
television channel frequencies The following tables show the frequencies assigned to broadcast television channels in various regions of the world, along with the ITU letter designator for the system used. The frequencies shown are for the analogue video and audio carriers. ...
(typically 50 to 870 MHz). In addition, the satellite also gets a DC to low frequency band to power the dish's
block converter A low-noise block downconverter (LNB) is the receiving device mounted on satellite dishes used for satellite TV reception, which collects the radio waves from the dish and converts them to a signal which is sent through a cable to the receiver ...
and select the dish antenna polarization (e.g., voltage signaling or
DiSEqC DiSEqC (; short for Digital Satellite Equipment Control) is a special communication protocol for use between a satellite receiver and a device such as a multi-dish switch or a small dish antenna rotor. DiSEqC was developed by European satellit ...
). The diplexer is useful in homes that are already wired with one cable, because it eliminates the need to install a second cable. For the diplexer to work, the existing cable must be able to pass the satellite frequencies with little loss. Older TV installations may use a solid dielectric
RG-59 RG-59/U is a specific type of coaxial cable, often used for low-power video and RF signal connections. The cable has a characteristic impedance of 75 ohms, and a capacitance of around 20pF/ft (60pF/m). The 75 ohm impedance matches a dipol ...
cable, and that cable may be inadequate.Legacy satellite receivers instructed the LNB to send only one polarization (half the possible channels). Modern receivers have dual channels, so they may need both polarizations at the same time. A DishPro LNB "stacks" the two polarizations (sends both polarizations down the same cable; one polarization is sent in a higher (stacked) band). Consequently, the LNB signal occupies a wider bandwidth, 950 to 2150 MHz. RG-59 has significant loss at the higher frequencies.
RG-6 RG-6/U is a common type of coaxial cable used in a wide variety of residential and commercial applications. An RG-6/U coaxial cable has a characteristic impedance of 75 ohms. The term, ''RG-6'', is generic and is applied to a wide variety o ...
cable is typically used for satellite feed lines. In this application, there would be a diplexer on the roof that joins the satellite dish feed and the TV antenna together into a single coaxial cable. That cable would then run from the roof into the house. At a convenient point, a second diplexer would split the two signals apart; one signal would go to the TV set and the other to the IRD of the DBS
set-top box A set-top box (STB), also colloquially known as a cable box and historically television decoder, is an information appliance device that generally contains a TV-tuner input and displays output to a television set and an external source of sign ...
. These usually have an antenna input and a diplexer, so that the antenna signal is also distributed along with the satellite. More modern installations confront several issues. There are often multiple satellite dishes that need to feed several receivers or even multichannel receivers. See, for example,
single cable distribution Single-cable distribution is a satellite TV technology that enables the delivery of broadcast programming to multiple users over a single coaxial cable, and eliminates the numerous cables required to support consumer electronics devices such as twi ...
. Diplexers were also used to combine UHF TV and VHF TV and FM signals onto one downlead, which can then be split back into its component parts as required.


See also

*
Power dividers and directional couplers Power dividers (also power splitters and, when used in reverse, power combiners) and directional couplers are passive devices used mostly in the field of radio technology. They couple a defined amount of the electromagnetic power in a transmiss ...
*
Bias tee A bias tee is a three-port network used for setting the DC bias point of some electronic components without disturbing other components. The bias tee is a diplexer. The low-frequency port is used to set the bias; the high-frequency port passes the r ...


References


External links


Use of diplexers in domestic TV distribution.
{{Authority control Broadcast engineering Radio electronics