TheInfoList

In
mathematics Mathematics (from Greek: ) includes the study of such topics as numbers (arithmetic and number theory), formulas and related structures (algebra), shapes and spaces in which they are contained (geometry), and quantities and their changes (cal ...
, a dihedral group is the
group A group is a number A number is a mathematical object used to counting, count, measurement, measure, and nominal number, label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with ...
of
symmetries Symmetry (from Ancient Greek, Greek συμμετρία ''symmetria'' "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" ...

of a
regular polygon In , a regular polygon is a that is (all angles are equal in measure) and (all sides have the same length). Regular polygons may be either or . In the , a sequence of regular polygons with an increasing number of sides approximates a , if the ...
, which includes rotational symmetry, rotations and reflection symmetry, reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, geometry, and chemistry. The notation for the dihedral group differs in geometry and abstract algebra. In geometry, or refers to the symmetries of the n-gon, -gon, a group of order . In abstract algebra, refers to this same dihedral group. The geometric convention is used in this article.

# Definition

## Elements

A regular polygon with $n$ sides has $2n$ different symmetries: $n$ rotational symmetry, rotational symmetries and $n$ reflection symmetry, reflection symmetries. Usually, we take $n \ge 3$ here. The associated rotations and reflection (mathematics), reflections make up the dihedral group $\mathrm_n$. If $n$ is odd, each axis of symmetry connects the midpoint of one side to the opposite vertex. If $n$ is even, there are $n/2$ axes of symmetry connecting the midpoints of opposite sides and $n/2$ axes of symmetry connecting opposite vertices. In either case, there are $n$ axes of symmetry and $2n$ elements in the symmetry group. Reflecting in one axis of symmetry followed by reflecting in another axis of symmetry produces a rotation through twice the angle between the axes. The following picture shows the effect of the sixteen elements of $\mathrm_8$ on a stop sign: The first row shows the effect of the eight rotations, and the second row shows the effect of the eight reflections, in each case acting on the stop sign with the orientation as shown at the top left.

## Group structure

As with any geometric object, the composition of functions, composition of two symmetries of a regular polygon is again a symmetry of this object. With composition of symmetries to produce another as the binary operation, this gives the symmetries of a polygon the algebraic structure of a group (mathematics), finite group. The following Cayley table shows the effect of composition in the group Dihedral group of order 6, D3 (the symmetries of an equilateral triangle). r0 denotes the identity; r1 and r2 denote counterclockwise rotations by 120° and 240° respectively, and s0, s1 and s2 denote reflections across the three lines shown in the adjacent picture. For example, , because the reflection s1 followed by the reflection s2 results in a rotation of 120°. The order of elements denoting the composition of functions, composition is right to left, reflecting the convention that the element acts on the expression to its right. The composition operation is not commutativity, commutative. In general, the group D''n'' has elements r0, ..., r''n''−1 and s0, ..., s''n''−1, with composition given by the following formulae: :$\mathrm_i\,\mathrm_j = \mathrm_, \quad \mathrm_i\,\mathrm_j = \mathrm_, \quad \mathrm_i\,\mathrm_j = \mathrm_, \quad \mathrm_i\,\mathrm_j = \mathrm_.$ In all cases, addition and subtraction of subscripts are to be performed using modular arithmetic with modulus ''n''.

## Matrix representation

If we center the regular polygon at the origin, then elements of the dihedral group act as linear map, linear transformations of the Cartesian coordinate system, plane. This lets us represent elements of D''n'' as Matrix (mathematics), matrices, with composition being matrix multiplication. This is an example of a (2-dimensional) group representation. For example, the elements of the group Dihedral group of order 8, D4 can be represented by the following eight matrices: :$\begin \mathrm_0 = \left\left(\begin 1 & 0 \\\left[0.2em\right] 0 & 1 \end\right\right), & \mathrm_1 = \left\left(\begin 0 & -1 \\\left[0.2em\right] 1 & 0 \end\right\right), & \mathrm_2 = \left\left(\begin -1 & 0 \\\left[0.2em\right] 0 & -1 \end\right\right), & \mathrm_3 = \left\left(\begin 0 & 1 \\\left[0.2em\right] -1 & 0 \end\right\right), \\\left[1em\right] \mathrm_0 = \left\left(\begin 1 & 0 \\\left[0.2em\right] 0 & -1 \end\right\right), & \mathrm_1 = \left\left(\begin 0 & 1 \\\left[0.2em\right] 1 & 0 \end\right\right), & \mathrm_2 = \left\left(\begin -1 & 0 \\\left[0.2em\right] 0 & 1 \end\right\right), & \mathrm_3 = \left\left(\begin 0 & -1 \\\left[0.2em\right] -1 & 0 \end\right\right). \end$ In general, the matrices for elements of D''n'' have the following form: :$\begin \mathrm_k & = \begin \cos \frac & -\sin \frac \\ \sin \frac & \cos \frac \end\ \ \text \\ \mathrm_k & = \begin \cos \frac & \sin \frac \\ \sin \frac & -\cos \frac \end . \end$ r''k'' is a rotation matrix, expressing a counterclockwise rotation through an angle of . s''k'' is a reflection across a line that makes an angle of 2 with the ''x''-axis.

## Other definitions

Further equivalent definitions of are:

# Small dihedral groups

is isomorphic to , the cyclic group of order 2. is isomorphic to , the Klein four-group. and are exceptional in that: * and are the only abelian group, abelian dihedral groups. Otherwise, is non-abelian. * is a subgroup of the symmetric group for . Since for or , for these values, is too large to be a subgroup. * The inner automorphism group of is trivial, whereas for other even values of , this is . The cycle graph (group), cycle graphs of dihedral groups consist of an ''n''-element cycle and ''n'' 2-element cycles. The dark vertex in the cycle graphs below of various dihedral groups represents the identity element, and the other vertices are the other elements of the group. A cycle consists of successive powers of either of the elements connected to the identity element.

# The dihedral group as symmetry group in 2D and rotation group in 3D

An example of abstract group , and a common way to visualize it, is the group of Euclidean plane isometry, Euclidean plane isometries which keep the origin fixed. These groups form one of the two series of discrete point groups in two dimensions. consists of rotations of multiples of about the origin, and Reflection (mathematics), reflections across lines through the origin, making angles of multiples of with each other. This is the symmetry group of a
regular polygon In , a regular polygon is a that is (all angles are equal in measure) and (all sides have the same length). Regular polygons may be either or . In the , a sequence of regular polygons with an increasing number of sides approximates a , if the ...
with sides (for ; this extends to the cases and where we have a plane with respectively a point offset from the "center" of the "1-gon" and a "2-gon" or line segment). is generating set of a group, generated by a rotation of order (group theory), order and a reflection of order 2 such that :$\mathrm = \mathrm^ \,$ In geometric terms: in the mirror a rotation looks like an inverse rotation. In terms of complex numbers: multiplication by $e^$ and complex conjugation. In matrix form, by setting :$\mathrm_1 = \begin \cos & -\sin \\\left[4pt\right] \sin & \cos \end\qquad \mathrm_0 = \begin 1 & 0 \\ 0 & -1 \end$ and defining $\mathrm_j = \mathrm_1^j$ and $\mathrm_j = \mathrm_j \, \mathrm_0$ for $j \in \$ we can write the product rules for D''n'' as :$\begin \mathrm_j \, \mathrm_k &= \mathrm_ \\ \mathrm_j \, \mathrm_k &= \mathrm_ \\ \mathrm_j \, \mathrm_k &= \mathrm_ \\ \mathrm_j \, \mathrm_k &= \mathrm_ \end$ (Compare coordinate rotations and reflections.) The dihedral group D2 is generated by the rotation r of 180 degrees, and the reflection s across the ''x''-axis. The elements of D2 can then be represented as , where e is the identity or null transformation and rs is the reflection across the ''y''-axis. D2 is group isomorphism, isomorphic to the Klein four-group. For ''n'' > 2 the operations of rotation and reflection in general do not commutative, commute and D''n'' is not abelian group, abelian; for example, in Dihedral group of order 8, D4, a rotation of 90 degrees followed by a reflection yields a different result from a reflection followed by a rotation of 90 degrees. Thus, beyond their obvious application to problems of symmetry in the plane, these groups are among the simplest examples of non-abelian groups, and as such arise frequently as easy counterexamples to theorems which are restricted to abelian groups. The elements of can be written as , , , ... , , , , , ... , . The first listed elements are rotations and the remaining elements are axis-reflections (all of which have order 2). The product of two rotations or two reflections is a rotation; the product of a rotation and a reflection is a reflection. So far, we have considered to be a subgroup of , i.e. the group of rotations (about the origin) and reflections (across axes through the origin) of the plane. However, notation is also used for a subgroup of SO(3) which is also of abstract group type : the symmetry group, proper symmetry group of a ''regular polygon embedded in three-dimensional space'' (if ''n'' ≥ 3). Such a figure may be considered as a degenerate regular solid with its face counted twice. Therefore, it is also called a ''dihedron'' (Greek: solid with two faces), which explains the name ''dihedral group'' (in analogy to ''tetrahedral'', ''octahedral'' and ''icosahedral group'', referring to the proper symmetry groups of a regular tetrahedron, octahedron, and icosahedron respectively).

## Examples of 2D dihedral symmetry

File:Imperial Seal of Japan.svg, 2D D16 symmetry – Imperial Seal of Japan, representing eightfold chrysanthemum with sixteen petals. File:Red Star of David.svg, 2D D6 symmetry – Red Cross (symbol)#The Red Star of David (Magen David Adom), The Red Star of David File:Naval Jack of the Republic of China.svg, 2D D12 symmetry — The Naval Jack of the Republic of China (White Sun) File:Ashoka Chakra.svg, 2D D24 symmetry – Ashoka Chakra, as depicted on the Flag of India, National flag of the Republic of India.

# Properties

The properties of the dihedral groups with depend on whether is even or odd. For example, the center of a group, center of consists only of the identity if ''n'' is odd, but if ''n'' is even the center has two elements, namely the identity and the element r''n''/2 (with D''n'' as a subgroup of O(2), this is Inversion (discrete mathematics), inversion; since it is scalar multiplication by −1, it is clear that it commutes with any linear transformation). In the case of 2D isometries, this corresponds to adding inversion, giving rotations and mirrors in between the existing ones. For ''n'' twice an odd number, the abstract group is isomorphic with the direct product of groups, direct product of and . Generally, if ''m'' divisor, divides ''n'', then has ''n''/''m'' subgroups of type , and one subgroup $\mathbb$''m''. Therefore, the total number of subgroups of (''n'' ≥ 1), is equal to ''d''(''n'') + σ(''n''), where ''d''(''n'') is the number of positive divisors of ''n'' and ''σ''(''n'') is the sum of the positive divisors of ''n''. See list of small groups for the cases ''n'' ≤ 8. The dihedral group of order 8 (D4) is the smallest example of a group that is not a T-group (mathematics), T-group. Any of its two Klein four-group subgroups (which are normal in D4) has as normal subgroup order-2 subgroups generated by a reflection (flip) in D4, but these subgroups are not normal in D4.

## Conjugacy classes of reflections

All the reflections are conjugacy class, conjugate to each other in case ''n'' is odd, but they fall into two conjugacy classes if ''n'' is even. If we think of the isometries of a regular ''n''-gon: for odd ''n'' there are rotations in the group between every pair of mirrors, while for even ''n'' only half of the mirrors can be reached from one by these rotations. Geometrically, in an odd polygon every axis of symmetry passes through a vertex and a side, while in an even polygon there are two sets of axes, each corresponding to a conjugacy class: those that pass through two vertices and those that pass through two sides. Algebraically, this is an instance of the conjugate Sylow theorem (for ''n'' odd): for ''n'' odd, each reflection, together with the identity, form a subgroup of order 2, which is a Sylow subgroup, Sylow 2-subgroup ( is the maximum power of 2 dividing ), while for ''n'' even, these order 2 subgroups are not Sylow subgroups because 4 (a higher power of 2) divides the order of the group. For ''n'' even there is instead an outer automorphism interchanging the two types of reflections (properly, a class of outer automorphisms, which are all conjugate by an inner automorphism).

# Automorphism group

The automorphism group of is isomorphic to the Holomorph (mathematics), holomorph of $\mathbb$/''n''$\mathbb$, i.e., to and has order ''nϕ''(''n''), where ''ϕ'' is Euler's totient function, the number of ''k'' in coprime to ''n''. It can be understood in terms of the generators of a reflection and an elementary rotation (rotation by ''k''(2''π''/''n''), for ''k'' coprime to ''n''); which automorphisms are inner and outer depends on the parity of ''n''. * For ''n'' odd, the dihedral group is centerless, so any element defines a non-trivial inner automorphism; for ''n'' even, the rotation by 180° (reflection through the origin) is the non-trivial element of the center. * Thus for ''n'' odd, the inner automorphism group has order 2''n'', and for ''n'' even (other than ) the inner automorphism group has order ''n''. * For ''n'' odd, all reflections are conjugate; for ''n'' even, they fall into two classes (those through two vertices and those through two faces), related by an outer automorphism, which can be represented by rotation by ''π''/''n'' (half the minimal rotation). * The rotations are a normal subgroup; conjugation by a reflection changes the sign (direction) of the rotation, but otherwise leaves them unchanged. Thus automorphisms that multiply angles by ''k'' (coprime to ''n'') are outer unless .

## Examples of automorphism groups

has 18 inner automorphisms. As 2D isometry group D9, the group has mirrors at 20° intervals. The 18 inner automorphisms provide rotation of the mirrors by multiples of 20°, and reflections. As isometry group these are all automorphisms. As abstract group there are in addition to these, 36 outer automorphisms; e.g., multiplying angles of rotation by 2. has 10 inner automorphisms. As 2D isometry group D10, the group has mirrors at 18° intervals. The 10 inner automorphisms provide rotation of the mirrors by multiples of 36°, and reflections. As isometry group there are 10 more automorphisms; they are conjugates by isometries outside the group, rotating the mirrors 18° with respect to the inner automorphisms. As abstract group there are in addition to these 10 inner and 10 outer automorphisms, 20 more outer automorphisms; e.g., multiplying rotations by 3. Compare the values 6 and 4 for Euler's totient function, the multiplicative group of integers modulo n, multiplicative group of integers modulo ''n'' for ''n'' = 9 and 10, respectively. This triples and doubles the number of automorphisms compared with the two automorphisms as isometries (keeping the order of the rotations the same or reversing the order). The only values of ''n'' for which ''φ''(''n'') = 2 are 3, 4, and 6, and consequently, there are only three dihedral groups that are isomorphic to their own automorphism groups, namely (order 6), (order 8), and (order 12).

## Inner automorphism group

The inner automorphism group of is isomorphic to: * if ''n'' is odd; * if is even (for , ).

# Generalizations

There are several important generalizations of the dihedral groups: * The infinite dihedral group is an infinite group with algebraic structure similar to the finite dihedral groups. It can be viewed as the group of symmetries of the integers. * The orthogonal group O(2), ''i.e.,'' the symmetry group of the circle, also has similar properties to the dihedral groups. * The family of generalized dihedral groups includes both of the examples above, as well as many other groups. * The quasidihedral groups are family of finite groups with similar properties to the dihedral groups.

* Coordinate rotations and reflections * Cycle index#Dihedral group Dn, Cycle index of the dihedral group * Dicyclic group * Dihedral group of order 6 * Dihedral group of order 8 * Point groups in three dimensions#Symmetry groups in 3D that are dihedral as abstract group, Dihedral symmetry groups in 3D * Dihedral symmetry in three dimensions