crystallographic electron microscopy
   HOME

TheInfoList



OR:

Electron crystallography is a method to determine the arrangement of atoms in solids using a
transmission electron microscope Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a gr ...
(TEM).


Comparison with X-ray crystallography

It can complement
X-ray crystallography X-ray crystallography is the experimental science determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract into many specific directions. By measuring the angles ...
for studies of very small crystals (<0.1 micrometers), both inorganic, organic, and
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
s, such as
membrane protein Membrane proteins are common proteins that are part of, or interact with, biological membranes. Membrane proteins fall into several broad categories depending on their location. Integral membrane proteins are a permanent part of a cell membrane ...
s, that cannot easily form the large 3-dimensional
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macro ...
s required for that process. Protein structures are usually determined from either 2-dimensional crystals (sheets or
helices A helix () is a shape like a corkscrew or spiral staircase. It is a type of smooth space curve with tangent lines at a constant angle to a fixed axis. Helices are important in biology, as the DNA molecule is formed as two intertwined helices, ...
),
polyhedron In geometry, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is the convex hull of finitely many points, not all on ...
s such as
viral capsid A capsid is the protein shell of a virus, enclosing its genetic material. It consists of several oligomeric (repeating) structural subunits made of protein called protomers. The observable 3-dimensional morphological subunits, which may or ma ...
s, or dispersed individual proteins. Electrons can be used in these situations, whereas
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
s cannot, because electrons interact more strongly with atoms than X-rays do. Thus, X-rays will travel through a thin 2-dimensional crystal without diffracting significantly, whereas electrons can be used to form an image. Conversely, the strong interaction between electrons and protons makes thick (e.g. 3-dimensional > 1 micrometer) crystals impervious to electrons, which only penetrate short distances. One of the main difficulties in X-ray crystallography is determining
phase Phase or phases may refer to: Science *State of matter, or phase, one of the distinct forms in which matter can exist *Phase (matter), a region of space throughout which all physical properties are essentially uniform * Phase space, a mathematic ...
s in the
diffraction pattern Diffraction is defined as the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a ...
. Because of the complexity of X-ray
lenses A lens is a transmissive optical device which focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (''elements''), ...
, it is difficult to form an image of the crystal being diffracted, and hence phase information is lost. Fortunately, electron microscopes can resolve atomic structure in real space and the crystallographic
structure factor In condensed matter physics and crystallography, the static structure factor (or structure factor for short) is a mathematical description of how a material scatters incident radiation. The structure factor is a critical tool in the interpretation ...
phase information can be experimentally determined from an image's Fourier transform. The Fourier transform of an atomic resolution image is similar, but different, to a diffraction pattern—with reciprocal lattice spots reflecting the symmetry and spacing of a crystal. Aaron Klug was the first to realize that the phase information could be read out directly from the Fourier transform of an electron microscopy image that had been scanned into a computer, already in 1968. For this, and his studies on virus structures and transfer-RNA, Klug received the Nobel Prize for chemistry in 1982.


Radiation damage

A common problem to X-ray crystallography and electron crystallography is
radiation damage Radiation damage is the effect of ionizing radiation on physical objects including non-living structural materials. It can be either detrimental or beneficial for materials. Radiobiology is the study of the action of ionizing radiation on livin ...
, by which especially organic molecules and proteins are damaged as they are being imaged, limiting the resolution that can be obtained. This is especially troublesome in the setting of electron crystallography, where that radiation damage is focused on far fewer atoms. One technique used to limit radiation damage is electron cryomicroscopy, in which the samples undergo
cryofixation Cryofixation is a technique for fixation or stabilisation of biological materials as the first step in specimen preparation for electron microscopy and cryo-electron microscopy. Typical specimens for cryofixation include small samples of plant or an ...
and imaging takes place at liquid nitrogen or even
liquid helium Liquid helium is a physical state of helium at very low temperatures at standard atmospheric pressures. Liquid helium may show superfluidity. At standard pressure, the chemical element helium exists in a liquid form only at the extremely low temp ...
temperatures. Because of this problem, X-ray crystallography has been much more successful in determining the structure of proteins that are especially vulnerable to radiation damage. Radiation damage was recently investigated using MicroED of thin 3D crystals in a frozen hydrated state.


Protein structures determined by electron crystallography

The first electron crystallographic protein structure to achieve atomic resolution was bacteriorhodopsin, determined by Richard Henderson and coworkers at the Medical Research Council
Laboratory of Molecular Biology The Medical Research Council (MRC) Laboratory of Molecular Biology (LMB) is a research institute in Cambridge, England, involved in the revolution in molecular biology which occurred in the 1950–60s. Since then it has remained a major medical r ...
in 1990. However, already in 1975 Unwin and Henderson had determined the first membrane protein structure at intermediate resolution (7 Ångström), showing for the first time the internal structure of a membrane protein, with its alpha-helices standing perpendicular to the plane of the membrane. Since then, several other high-resolution structures have been determined by electron crystallography, including the
light-harvesting complex A light-harvesting complex consists of a number of chromophores which are complex subunit proteins that may be part of a larger super complex of a photosystem, the functional unit in photosynthesis. It is used by plants and photosynthetic bacteri ...
, the
nicotinic acetylcholine receptor Nicotinic acetylcholine receptors, or nAChRs, are receptor polypeptides that respond to the neurotransmitter acetylcholine. Nicotinic receptors also respond to drugs such as the agonist nicotine. They are found in the central and peripheral ner ...
, and the bacterial
flagellum A flagellum (; ) is a hairlike appendage that protrudes from certain plant and animal sperm cells, and from a wide range of microorganisms to provide motility. Many protists with flagella are termed as flagellates. A microorganism may have f ...
. The highest resolution protein structure solved by electron crystallography of 2D crystals is that of the water channel
aquaporin Aquaporins, also called water channels, are channel proteins from a larger family of major intrinsic proteins that form pores in the membrane of biological cells, mainly facilitating transport of water between cells. The cell membranes of a ...
-0. In 2013 electron crystallography was extended to 3D crystals by a new method called
microcrystal electron diffraction Microcrystal electron diffraction, or MicroED, is a Cryogenic electron microscopy, CryoEM method that was developed by the Tamir Gonen, Gonen laboratory in late 2013 at the Janelia Research Campus of the Howard Hughes Medical Institute. MicroED is ...
, or MicroED.


Application to inorganic materials

Electron crystallographic studies on inorganic crystals using high-resolution electron microscopy (HREM) images were first performed by Aaron Klug in 1978 and by Sven Hovmöller and coworkers in 1984. HREM images were used because they allow to select (by computer software) only the very thin regions close to the edge of the crystal for structure analysis (see also crystallographic image processing). This is of crucial importance since in the thicker parts of the crystal the exit-wave function (which carries the information about the intensity and position of the projected atom columns) is no longer linearly related to the projected crystal structure. Moreover, not only do the HREM images change their appearance with increasing crystal thickness, they are also very sensitive to the chosen setting of the defocus Δf of the objective lens (see the HREM images of
GaN The word Gan or the initials GAN may refer to: Places *Gan, a component of Hebrew placenames literally meaning "garden" China * Gan River (Jiangxi) * Gan River (Inner Mongolia), * Gan County, in Jiangxi province * Gansu, abbreviated ''Gā ...
for example). To cope with this complexity Michael O'Keefe started in the early 1970s to develop image simulation software which allowed to understand an interpret the observed contrast changes in HREM images. There was a serious disagreement in the field of electron microscopy of inorganic compounds; while some have claimed that "the phase information is present in EM images" others have the opposite view that "the phase information is lost in EM images". The reason for these opposite views is that the word "phase" has been used with different meanings in the two communities of physicists and crystallographers. The physicists are more concerned about the "electron
wave phase In physics and mathematics, the phase of a periodic function F of some real variable t (such as time) is an angle-like quantity representing the fraction of the cycle covered up to t. It is denoted \phi(t) and expressed in such a scale that it ...
" - the phase of a wave moving through the sample during exposure by the electrons. This wave has a wavelength of about 0.02-0.03 Ångström (depending on the accelerating voltage of the electron microscope). Its phase is related to the phase of the undiffracted direct electron beam. The crystallographers, on the other hand, mean the "crystallographic
structure factor In condensed matter physics and crystallography, the static structure factor (or structure factor for short) is a mathematical description of how a material scatters incident radiation. The structure factor is a critical tool in the interpretation ...
phase" when they simply say "phase". This phase is the phase of standing waves of potential in the crystal (very similar to the electron density measured in X-ray crystallography). Each of these waves have their specific wavelength, called d-value for distance between so-called Bragg planes of low/high potential. These d-values range from the unit cell dimensions to the resolution limit of the electron microscope, i.e. typically from 10 or 20 Ångströms down to 1 or 2 Ångströms. Their phases are related to a fixed point in the crystal, defined in relation to the symmetry elements of that crystal. The crystallographic phases are a property of the crystal, so they exist also outside the electron microscope. The electron waves vanish if the microscope is switched off. In order to determine a crystal structure, it is necessary to know the crystallographic structure factors, but not to know the electron wave phases. A more detailed discussion how (crystallographic structure factor) phases link with the phases of the electron wave can be found in. Just as with proteins, it has been possible to determine the atomic structures of inorganic crystals by electron crystallography. For simpler structure it is sufficient to use three perpendicular views, but for more complicated structures, also projections down ten or more different diagonals may be needed. In addition to electron microscopy images, it is also possible to use electron diffraction (ED) patterns for crystal structure determination. The utmost care must be taken to record such ED patterns from the thinnest areas in order to keep most of the structure related intensity differences between the reflections (quasi-kinematical diffraction conditions). Just as with X-ray diffraction patterns, the important crystallographic structure factor phases are lost in electron diffraction patterns and must be uncovered by special crystallographic methods such as direct methods, maximum likelihood or (more recently) by the charge-flipping method. On the other hand, ED patterns of inorganic crystals have often a high resolution (= interplanar spacings with high
Miller indices Miller indices form a notation system in crystallography for lattice planes in crystal (Bravais) lattices. In particular, a family of lattice planes of a given (direct) Bravais lattice is determined by three integers ''h'', ''k'', and '' ...
) much below 1 Ångström. This is comparable to the point resolution of the best electron microscopes. Under favourable conditions it is possible to use ED patterns from a single orientation to determine the complete crystal structure. Alternatively a hybrid approach can be used which uses HRTEM images for solving and intensities from ED for refining the crystal structure. Recent progress for structure analysis by ED was made by introducing the Vincent-Midgley precession technique for recording electron diffraction patterns. The thereby obtained intensities are usually much closer to the kinematical intensities, so that even structures can be determined that are out of range when processing conventional (selected area) electron diffraction data. Crystal structures determined via electron crystallography can be checked for their quality by using first-principles calculations within
density functional theory Density-functional theory (DFT) is a computational quantum mechanical modelling method used in physics, chemistry and materials science to investigate the electronic structure (or nuclear structure) (principally the ground state) of many-body ...
(DFT). This approach was for the first time applied for the validation of several metal-rich structures which were only accessible by HRTEM and ED, respectively. Recently, two very complicated
zeolite Zeolites are microporous, crystalline aluminosilicate materials commonly used as commercial adsorbents and catalysts. They mainly consist of silicon, aluminium, oxygen, and have the general formula ・y where is either a metal ion or H+. These p ...
structures have been determined by electron crystallography combined with X-ray powder diffraction. These are more complex than the most complex zeolite structures determined by X-ray crystallography.


References


Further reading

*Zou, XD, Hovmöller, S. and Oleynikov, P. "Electron Crystallography - Electron microscopy and Electron Diffraction". IUCr Texts on Crystallography 16, Oxford university press 2011. http://ukcatalogue.oup.com/product/9780199580200.do '' * * * T.E. Weirich, X.D. Zou & J.L. Lábár (2006). ''Electron Crystallography: Novel Approaches for Structure Determination of Nanosized Materials''. Springer Netherlands,


External links


Interview with Aaron Klug Nobel Laureate for work on crystallograph electron microscopy
Freeview video by the Vega Science Trust. * {{DEFAULTSORT:Electron Crystallography Crystallography Protein structure