HOME

TheInfoList



OR:

In mathematics, the concept of a measure is a generalization and formalization of geometrical measures ( length,
area Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while ''surface area'' refers to the area of an open s ...
, volume) and other common notions, such as mass and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in
probability theory Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set ...
, integration theory, and can be generalized to assume negative values, as with
electrical charge Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by ...
. Far-reaching generalizations (such as
spectral measure In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dis ...
s and projection-valued measures) of measure are widely used in
quantum physics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, q ...
and physics in general. The intuition behind this concept dates back to
ancient Greece Ancient Greece ( el, Ἑλλάς, Hellás) was a northeastern Mediterranean civilization, existing from the Greek Dark Ages of the 12th–9th centuries BC to the end of classical antiquity ( AD 600), that comprised a loose collection of cult ...
, when
Archimedes Archimedes of Syracuse (;; ) was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scientists i ...
tried to calculate the area of a circle. But it was not until the late 19th and early 20th centuries that measure theory became a branch of mathematics. The foundations of modern measure theory were laid in the works of Émile Borel,
Henri Lebesgue Henri Léon Lebesgue (; June 28, 1875 – July 26, 1941) was a French mathematician known for his theory of integration, which was a generalization of the 17th-century concept of integration—summing the area between an axis and the curve of ...
, Nikolai Luzin, Johann Radon,
Constantin Carathéodory Constantin Carathéodory ( el, Κωνσταντίνος Καραθεοδωρή, Konstantinos Karatheodori; 13 September 1873 – 2 February 1950) was a Greek mathematician who spent most of his professional career in Germany. He made significant ...
, and Maurice Fréchet, among others.


Definition

Let X be a set and \Sigma a \sigma-algebra over X. A set function \mu from \Sigma to the extended real number line is called a measure if it satisfies the following properties: *Non-negativity: For all E in \Sigma, we have \mu(E) \geq 0. *Null empty set: \mu(\varnothing) = 0. *Countable additivity (or \sigma-additivity): For all
countable In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers ...
collections \_^\infty of pairwise disjoint sets in Σ,\mu\left(\bigcup_^\infty E_k\right)=\sum_^\infty \mu(E_k). If at least one set E has finite measure, then the requirement that \mu(\varnothing) = 0 is met automatically. Indeed, by countable additivity, \mu(E)=\mu(E \cup \varnothing) = \mu(E) + \mu(\varnothing), and therefore \mu(\varnothing)=0. If the condition of non-negativity is omitted but the second and third of these conditions are met, and \mu takes on at most one of the values \pm \infty, then \mu is called a '' signed measure''. The pair (X, \Sigma) is called a ''
measurable space In mathematics, a measurable space or Borel space is a basic object in measure theory. It consists of a set and a σ-algebra, which defines the subsets that will be measured. Definition Consider a set X and a σ-algebra \mathcal A on X. Then t ...
'', and the members of \Sigma are called measurable sets. A triple (X, \Sigma, \mu) is called a '' measure space''. A
probability measure In mathematics, a probability measure is a real-valued function defined on a set of events in a probability space that satisfies measure properties such as ''countable additivity''. The difference between a probability measure and the more ge ...
is a measure with total measure one – that is, \mu(X) = 1. A probability space is a measure space with a probability measure. For measure spaces that are also
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...
s various compatibility conditions can be placed for the measure and the topology. Most measures met in practice in
analysis Analysis ( : analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (3 ...
(and in many cases also in
probability theory Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set ...
) are
Radon measure In mathematics (specifically in measure theory), a Radon measure, named after Johann Radon, is a measure on the σ-algebra of Borel sets of a Hausdorff topological space ''X'' that is finite on all compact sets, outer regular on all Borel s ...
s. Radon measures have an alternative definition in terms of linear functionals on the locally convex topological vector space of continuous functions with
compact support In mathematics, the support of a real-valued function f is the subset of the function domain containing the elements which are not mapped to zero. If the domain of f is a topological space, then the support of f is instead defined as the smalle ...
. This approach is taken by Bourbaki (2004) and a number of other sources. For more details, see the article on
Radon measure In mathematics (specifically in measure theory), a Radon measure, named after Johann Radon, is a measure on the σ-algebra of Borel sets of a Hausdorff topological space ''X'' that is finite on all compact sets, outer regular on all Borel s ...
s.


Instances

Some important measures are listed here. * The
counting measure In mathematics, specifically measure theory, the counting measure is an intuitive way to put a measure on any set – the "size" of a subset is taken to be the number of elements in the subset if the subset has finitely many elements, and infini ...
is defined by \mu(S) = number of elements in S. * The Lebesgue measure on \R is a
complete Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies t ...
translation-invariant measure on a ''σ''-algebra containing the intervals in \R such that \mu(
, 1 The comma is a punctuation mark that appears in several variants in different languages. It has the same shape as an apostrophe or single closing quotation mark () in many typefaces, but it differs from them in being placed on the baseline o ...
= 1; and every other measure with these properties extends Lebesgue measure. * Circular
angle In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the ''vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles a ...
measure is invariant under rotation, and hyperbolic angle measure is invariant under
squeeze mapping In linear algebra, a squeeze mapping, also called a squeeze transformation, is a type of linear map that preserves Euclidean area of regions in the Cartesian plane, but is ''not'' a rotation or shear mapping. For a fixed positive real number , th ...
. * The Haar measure for a
locally compact In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which ...
topological group is a generalization of the Lebesgue measure (and also of counting measure and circular angle measure) and has similar uniqueness properties. * The
Hausdorff measure In mathematics, Hausdorff measure is a generalization of the traditional notions of area and volume to non-integer dimensions, specifically fractals and their Hausdorff dimensions. It is a type of outer measure, named for Felix Hausdorff, that ...
is a generalization of the Lebesgue measure to sets with non-integer dimension, in particular, fractal sets. * Every probability space gives rise to a measure which takes the value 1 on the whole space (and therefore takes all its values in the unit interval
, 1 The comma is a punctuation mark that appears in several variants in different languages. It has the same shape as an apostrophe or single closing quotation mark () in many typefaces, but it differs from them in being placed on the baseline o ...
. Such a measure is called a ''probability measure''. See probability axioms. * The Dirac measure ''δ''''a'' (cf.
Dirac delta function In mathematics, the Dirac delta distribution ( distribution), also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire ...
) is given by ''δ''''a''(''S'') = ''χ''''S''(a), where ''χ''''S'' is the indicator function of S. The measure of a set is 1 if it contains the point a and 0 otherwise. Other 'named' measures used in various theories include:
Borel measure In mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets (and thus on all Borel sets). Some authors require additional restrictions on the measure, as described below. ...
, Jordan measure, ergodic measure,
Gaussian measure In mathematics, Gaussian measure is a Borel measure on finite-dimensional Euclidean space R''n'', closely related to the normal distribution in statistics. There is also a generalization to infinite-dimensional spaces. Gaussian measures are nam ...
, Baire measure,
Radon measure In mathematics (specifically in measure theory), a Radon measure, named after Johann Radon, is a measure on the σ-algebra of Borel sets of a Hausdorff topological space ''X'' that is finite on all compact sets, outer regular on all Borel s ...
,
Young measure In mathematical analysis, a Young measure is a parameterized measure that is associated with certain subsequences of a given bounded sequence of measurable functions. They are a quantification of the oscillation effect of the sequence in the limi ...
, and Loeb measure. In physics an example of a measure is spatial distribution of mass (see for example,
gravity potential In classical mechanics, the gravitational potential at a location is equal to the work (energy transferred) per unit mass that would be needed to move an object to that location from a fixed reference location. It is analogous to the electric p ...
), or another non-negative extensive property, conserved (see
conservation law In physics, a conservation law states that a particular measurable property of an isolated physical system does not change as the system evolves over time. Exact conservation laws include conservation of energy, conservation of linear momentum, c ...
for a list of these) or not. Negative values lead to signed measures, see "generalizations" below. *
Liouville measure In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, M , equipped with a closed nondegenerate differential 2-form \omega , called the symplectic form. The study of symplectic manifolds is called sympl ...
, known also as the natural volume form on a symplectic manifold, is useful in classical statistical and Hamiltonian mechanics. *
Gibbs measure In mathematics, the Gibbs measure, named after Josiah Willard Gibbs, is a probability measure frequently seen in many problems of probability theory and statistical mechanics. It is a generalization of the canonical ensemble to infinite systems. Th ...
is widely used in statistical mechanics, often under the name
canonical ensemble In statistical mechanics, a canonical ensemble is the statistical ensemble that represents the possible states of a mechanical system in thermal equilibrium with a heat bath at a fixed temperature. The system can exchange energy with the heat b ...
.


Basic properties

Let \mu be a measure.


Monotonicity

If E_1 and E_2 are measurable sets with E_1 \subseteq E_2 then \mu(E_1) \leq \mu(E_2).


Measure of countable unions and intersections


Subadditivity

For any
countable In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers ...
sequence E_1, E_2, E_3, \ldots of (not necessarily disjoint) measurable sets E_n in \Sigma: \mu\left( \bigcup_^\infty E_i\right) \leq \sum_^\infty \mu(E_i).


Continuity from below

If E_1, E_2, E_3, \ldots are measurable sets that are increasing (meaning that E_1 \subseteq E_2 \subseteq E_3 \subseteq \ldots) then the
union Union commonly refers to: * Trade union, an organization of workers * Union (set theory), in mathematics, a fundamental operation on sets Union may also refer to: Arts and entertainment Music * Union (band), an American rock group ** ''U ...
of the sets E_n is measurable and \mu\left(\bigcup_^\infty E_i\right) ~=~ \lim_ \mu(E_i) = \sup_ \mu(E_i).


Continuity from above

If E_1, E_2, E_3, \ldots are measurable sets that are decreasing (meaning that E_1 \supseteq E_2 \supseteq E_3 \supseteq \ldots) then the intersection of the sets E_n is measurable; furthermore, if at least one of the E_n has finite measure then \mu\left(\bigcap_^\infty E_i\right) = \lim_ \mu(E_i) = \inf_ \mu(E_i). This property is false without the assumption that at least one of the E_n has finite measure. For instance, for each n \in \N, let E_n = [n, \infty) \subseteq \R, which all have infinite Lebesgue measure, but the intersection is empty.


Other properties


Completeness

A measurable set X is called a ''null set'' if \mu(X) = 0. A subset of a null set is called a ''negligible set''. A negligible set need not be measurable, but every measurable negligible set is automatically a null set. A measure is called ''complete'' if every negligible set is measurable. A measure can be extended to a complete one by considering the σ-algebra of subsets Y which differ by a negligible set from a measurable set X, that is, such that the symmetric difference of X and Y is contained in a null set. One defines \mu(Y) to equal \mu(X).


μ = μ (a.e.)

If f:X\to ,+\infty/math> is (\Sigma,( ,+\infty)-measurable, then \mu\ = \mu\ for
almost all In mathematics, the term "almost all" means "all but a negligible amount". More precisely, if X is a set, "almost all elements of X" means "all elements of X but those in a negligible subset of X". The meaning of "negligible" depends on the math ...
t \in X. This property is used in connection with
Lebesgue integral In mathematics, the integral of a non-negative function of a single variable can be regarded, in the simplest case, as the area between the graph of that function and the -axis. The Lebesgue integral, named after French mathematician Henri Le ...
.


Additivity

Measures are required to be countably additive. However, the condition can be strengthened as follows. For any set I and any set of nonnegative r_i,i\in I define: \sum_ r_i=\sup\left\lbrace\sum_ r_i : , J, <\aleph_0, J\subseteq I\right\rbrace. That is, we define the sum of the r_i to be the supremum of all the sums of finitely many of them. A measure \mu on \Sigma is \kappa-additive if for any \lambda<\kappa and any family of disjoint sets X_\alpha,\alpha<\lambda the following hold: \bigcup_ X_\alpha \in \Sigma \mu\left(\bigcup_ X_\alpha\right) = \sum_\mu\left(X_\alpha\right). Note that the second condition is equivalent to the statement that the
ideal Ideal may refer to: Philosophy * Ideal (ethics), values that one actively pursues as goals * Platonic ideal, a philosophical idea of trueness of form, associated with Plato Mathematics * Ideal (ring theory), special subsets of a ring considered ...
of null sets is \kappa-complete.


Sigma-finite measures

A measure space (X, \Sigma, \mu) is called finite if \mu(X) is a finite real number (rather than \infty). Nonzero finite measures are analogous to
probability measure In mathematics, a probability measure is a real-valued function defined on a set of events in a probability space that satisfies measure properties such as ''countable additivity''. The difference between a probability measure and the more ge ...
s in the sense that any finite measure \mu is proportional to the probability measure \frac\mu. A measure \mu is called ''σ-finite'' if X can be decomposed into a countable union of measurable sets of finite measure. Analogously, a set in a measure space is said to have a ''σ-finite measure'' if it is a countable union of sets with finite measure. For example, the real numbers with the standard Lebesgue measure are σ-finite but not finite. Consider the
closed interval In mathematics, a (real) interval is a set of real numbers that contains all real numbers lying between any two numbers of the set. For example, the set of numbers satisfying is an interval which contains , , and all numbers in between. Othe ...
s , k+1/math> for all integers k; there are countably many such intervals, each has measure 1, and their union is the entire real line. Alternatively, consider the real numbers with the
counting measure In mathematics, specifically measure theory, the counting measure is an intuitive way to put a measure on any set – the "size" of a subset is taken to be the number of elements in the subset if the subset has finitely many elements, and infini ...
, which assigns to each finite set of reals the number of points in the set. This measure space is not σ-finite, because every set with finite measure contains only finitely many points, and it would take uncountably many such sets to cover the entire real line. The σ-finite measure spaces have some very convenient properties; σ-finiteness can be compared in this respect to the Lindelöf property of topological spaces. They can be also thought of as a vague generalization of the idea that a measure space may have 'uncountable measure'.


Strictly localizable measures


Semifinite measures

Let X be a set, let be a sigma-algebra on X, and let \mu be a measure on . We say \mu is semifinite to mean that for all A\in\mu^\text\, (A)\cap\mu^\text(\R_)\ne\emptyset. Semifinite measures generalize sigma-finite measures, in such a way that some big theorems of measure theory that hold for sigma-finite but not arbitrary measures can be extended with little modification to hold for semifinite measures. (To-do: add examples of such theorems; cf. the talk page.)


Basic examples

* Every sigma-finite measure is semifinite. * Assume =(X), let f:X\to ,+\infty and assume \mu(A)=\sum_f(a) for all A\subseteq X. ** We have that \mu is sigma-finite if and only if f(x)<+\infty for all x\in X and f^\text(\R_) is countable. We have that \mu is semifinite if and only if f(x)<+\infty for all x\in X. ** Taking f=X\times\ above (so that \mu is counting measure on (X)), we see that counting measure on (X) is *** sigma-finite if and only if X is countable; and *** semifinite (without regard to whether X is countable). (Thus, counting measure, on the power set (X) of an arbitrary uncountable set X, gives an example of a semifinite measure that is not sigma-finite.) * Let d be a complete, separable metric on X, let be the Borel sigma-algebra induced by d, and let s\in\R_. Then the
Hausdorff measure In mathematics, Hausdorff measure is a generalization of the traditional notions of area and volume to non-integer dimensions, specifically fractals and their Hausdorff dimensions. It is a type of outer measure, named for Felix Hausdorff, that ...
^s, is semifinite. * Let d be a complete, separable metric on X, let be the Borel sigma-algebra induced by d, and let s\in\R_. Then the packing measure ^s, is semifinite.


Involved example

The zero measure is sigma-finite and thus semifinite. In addition, the zero measure is clearly less than or equal to \mu. It can be shown there is a greatest measure with these two properties: We say the semifinite part of \mu to mean the semifinite measure \mu_\text defined in the above theorem. We give some nice, explicit formulas, which some authors may take as definition, for the semifinite part: * \mu_\text=(\sup\)_. * \mu_\text=(\sup\)_\}. * \mu_\text=\mu, _\cup\\times\\cup\\times\. Since \mu_\text is semifinite, it follows that if \mu=\mu_\text then \mu is semifinite. It is also evident that if \mu is semifinite then \mu=\mu_\text.


Non-examples

Every ''0-\infty measure'' that is not the zero measure is not semifinite. (Here, we say ''0-\infty measure'' to mean a measure whose range lies in \: (\forall A\in)(\mu(A)\in\).) Below we give examples of 0-\infty measures that are not zero measures. * Let X be nonempty, let be a \sigma-algebra on X, let f:X\to\ be not the zero function, and let \mu=(\sum_f(x))_. It can be shown that \mu is a measure. ** \mu=\\cup(\setminus\)\times\. *** X=\, =\, \mu=\. * Let X be uncountable, let be a \sigma-algebra on X, let =\ be the countable elements of , and let \mu=\times\\cup(\setminus)\times\. It can be shown that \mu is a measure.


Involved non-example

We say the \mathbf part of \mu to mean the measure \mu_ defined in the above theorem. Here is an explicit formula for \mu_: \mu_=(\sup\)_.


Results regarding semifinite measures

* Let \mathbb F be \R or \C, and let T:L_\mathbb^\infty(\mu)\to\left(L_\mathbb^1(\mu)\right)^*:g\mapsto T_g=\left(\int fgd\mu\right)_. Then \mu is semifinite if and only if T is injective. (This result has import in the study of the dual space of L^1=L_\mathbb^1(\mu).) * Let \mathbb F be \R or \C, and let be the topology of convergence in measure on L_\mathbb^0(\mu). Then \mu is semifinite if and only if is Hausdorff. * (Johnson) Let X be a set, let be a sigma-algebra on X, let \mu be a measure on , let Y be a set, let be a sigma-algebra on Y, and let \nu be a measure on . If \mu,\nu are both not a 0-\infty measure, then both \mu and \nu are semifinite if and only if (\mu\times_\text\nu)(A\times B)=\mu(A)\nu(B) for all A\in and B\in. (Here, \mu\times_\text\nu is the measure defined in Theorem 39.1 in Berberian '65.)


Localizable measures

Localizable measures are a special case of semifinite measures and a generalization of sigma-finite measures. Let X be a set, let be a sigma-algebra on X, and let \mu be a measure on . * Let \mathbb F be \R or \C, and let T : L_\mathbb^\infty(\mu) \to \left(L_\mathbb^1(\mu)\right)^* : g \mapsto T_g = \left(\int fgd\mu\right)_. Then \mu is localizable if and only if T is bijective (if and only if L_\mathbb^\infty(\mu) "is" L_\mathbb^1(\mu)^*).


s-finite measures

A measure is said to be s-finite if it is a countable sum of bounded measures. S-finite measures are more general than sigma-finite ones and have applications in the theory of
stochastic processes In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables. Stochastic processes are widely used as mathematical models of systems and phenomena that appea ...
.


Non-measurable sets

If the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
is assumed to be true, it can be proved that not all subsets of Euclidean space are Lebesgue measurable; examples of such sets include the Vitali set, and the non-measurable sets postulated by the
Hausdorff paradox The Hausdorff paradox is a paradox in mathematics named after Felix Hausdorff. It involves the sphere (a 3-dimensional sphere in ). It states that if a certain countable subset is removed from , then the remainder can be divided into three disjoi ...
and the
Banach–Tarski paradox The Banach–Tarski paradox is a theorem in set-theoretic geometry, which states the following: Given a solid ball in three-dimensional space, there exists a decomposition of the ball into a finite number of disjoint subsets, which can then be p ...
.


Generalizations

For certain purposes, it is useful to have a "measure" whose values are not restricted to the non-negative reals or infinity. For instance, a countably additive set function with values in the (signed) real numbers is called a '' signed measure'', while such a function with values in the complex numbers is called a ''
complex measure In mathematics, specifically measure theory, a complex measure generalizes the concept of measure by letting it have complex values. In other words, one allows for sets whose size (length, area, volume) is a complex number. Definition Formally ...
''. Observe, however, that complex measure is necessarily of finite variation, hence complex measures include finite signed measures but not, for example, the Lebesgue measure. Measures that take values in
Banach spaces In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vect ...
have been studied extensively. A measure that takes values in the set of self-adjoint projections on a Hilbert space is called a '' projection-valued measure''; these are used in functional analysis for the
spectral theorem In mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized (that is, represented as a diagonal matrix in some basis). This is extremely useful be ...
. When it is necessary to distinguish the usual measures which take non-negative values from generalizations, the term positive measure is used. Positive measures are closed under
conical combination Given a finite number of vectors x_1, x_2, \dots, x_n in a real vector space, a conical combination, conical sum, or weighted sum''Convex Analysis and Minimization Algorithms'' by Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal, 1993, pp. 101, 102 ...
but not general linear combination, while signed measures are the linear closure of positive measures. Another generalization is the ''finitely additive measure'', also known as a
content Content or contents may refer to: Media * Content (media), information or experience provided to audience or end-users by publishers or media producers ** Content industry, an umbrella term that encompasses companies owning and providing mas ...
. This is the same as a measure except that instead of requiring ''countable'' additivity we require only ''finite'' additivity. Historically, this definition was used first. It turns out that in general, finitely additive measures are connected with notions such as
Banach limit In mathematical analysis, a Banach limit is a continuous linear functional \phi: \ell^\infty \to \mathbb defined on the Banach space \ell^\infty of all bounded complex-valued sequences such that for all sequences x = (x_n), y = (y_n) in \ell^\in ...
s, the dual of L^\infty and the Stone–Čech compactification. All these are linked in one way or another to the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
. Contents remain useful in certain technical problems in geometric measure theory; this is the theory of
Banach measure In the mathematical discipline of measure theory, a Banach measure is a certain type of content used to formalize geometric area in problems vulnerable to the axiom of choice. Traditionally, intuitive notions of area are formalized as a class ...
s. A
charge Charge or charged may refer to: Arts, entertainment, and media Films * ''Charge, Zero Emissions/Maximum Speed'', a 2011 documentary Music * ''Charge'' (David Ford album) * ''Charge'' (Machel Montano album) * '' Charge!!'', an album by The Aqu ...
is a generalization in both directions: it is a finitely additive, signed measure. (Cf.
ba space In mathematics, the ba space ba(\Sigma) of an algebra of sets \Sigma is the Banach space consisting of all bounded and finitely additive signed measures on \Sigma. The norm is defined as the variation, that is \, \nu\, =, \nu, (X). If Σ is ...
for information about ''bounded'' charges, where we say a charge is ''bounded'' to mean its range its a bounded subset of ''R''.)


See also

*
Abelian von Neumann algebra In functional analysis, an abelian von Neumann algebra is a von Neumann algebra of operators on a Hilbert space in which all elements commute. The prototypical example of an abelian von Neumann algebra is the algebra ''L''∞(''X'', μ) for μ ...
*
Almost everywhere In measure theory (a branch of mathematical analysis), a property holds almost everywhere if, in a technical sense, the set for which the property holds takes up nearly all possibilities. The notion of "almost everywhere" is a companion notion to ...
*
Carathéodory's extension theorem In measure theory, Carathéodory's extension theorem (named after the mathematician Constantin Carathéodory) states that any pre-measure defined on a given ring of subsets ''R'' of a given set ''Ω'' can be extended to a measure on the σ-al ...
*
Content (measure theory) In mathematics, a content is a set function that is like a measure, but a content must only be finitely additive, whereas a measure must be countably additive. A content is a real function \mu defined on a collection of subsets \mathcal such that ...
* Fubini's theorem *
Fatou's lemma In mathematics, Fatou's lemma establishes an inequality relating the Lebesgue integral of the limit inferior of a sequence of functions to the limit inferior of integrals of these functions. The lemma is named after Pierre Fatou. Fatou's le ...
* Fuzzy measure theory * Geometric measure theory *
Hausdorff measure In mathematics, Hausdorff measure is a generalization of the traditional notions of area and volume to non-integer dimensions, specifically fractals and their Hausdorff dimensions. It is a type of outer measure, named for Felix Hausdorff, that ...
*
Inner measure In mathematics, in particular in measure theory, an inner measure is a function on the power set of a given set, with values in the extended real numbers, satisfying some technical conditions. Intuitively, the inner measure of a set is a lower bo ...
* Lebesgue integration * Lebesgue measure * Lorentz space * Lifting theory *
Measurable cardinal In mathematics, a measurable cardinal is a certain kind of large cardinal number. In order to define the concept, one introduces a two-valued measure on a cardinal , or more generally on any set. For a cardinal , it can be described as a subdivis ...
*
Measurable function In mathematics and in particular measure theory, a measurable function is a function between the underlying sets of two measurable spaces that preserves the structure of the spaces: the preimage of any measurable set is measurable. This is in d ...
*
Minkowski content The Minkowski content (named after Hermann Minkowski), or the boundary measure, of a set is a basic concept that uses concepts from geometry and measure theory to generalize the notions of length of a smooth curve in the plane, and area of a smoot ...
* Outer measure * Product measure * Pushforward measure * Regular measure * Vector measure *
Valuation (measure theory) In measure theory, or at least in the approach to it via the domain theory, a valuation is a Map (mathematics), map from the class of open sets of a topological space to the set of positive number, positive real numbers including infinity, with cert ...
* Volume form


Notes


Bibliography

*
Robert G. Bartle Robert Gardner Bartle (November 20, 1927 – September 18, 2003) was an American mathematician specializing in real analysis. He is known for writing the popular textbooks ''The Elements of Real Analysis'' (1964), ''The Elements of Integration'' ...
(1995) ''The Elements of Integration and Lebesgue Measure'', Wiley Interscience. * * * * * Chapter III. * R. M. Dudley, 2002. ''Real Analysis and Probability''. Cambridge University Press. * * * Federer, Herbert. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153 Springer-Verlag New York Inc., New York 1969 xiv+676 pp. * Second printing. * * * R. Duncan Luce and Louis Narens (1987). "measurement, theory of," ''The New Palgrave: A Dictionary of Economics'', v. 3, pp. 428–32. * * ** The first edition was published with ''Part B: Functional Analysis'' as a single volume: * M. E. Munroe, 1953. ''Introduction to Measure and Integration''. Addison Wesley. * * * First printing. Note that there is a later (2017) second printing. Though usually there is little difference between the first and subsequent printings, in this case the second printing not only deletes from page 53 the Exercises 36, 40, 41, and 42 of Chapter 2 but also offers a (slightly, but still substantially) different presentation of part (ii) of Exercise 17.8. (The second printing's presentation of part (ii) of Exercise 17.8 (on the Luther decomposition) agrees with usual presentations, whereas the first printing's presentation provides a fresh perspective.) * Shilov, G. E., and Gurevich, B. L., 1978. ''Integral, Measure, and Derivative: A Unified Approach'', Richard A. Silverman, trans. Dover Publications. . Emphasizes the Daniell integral. * * *


References


External links

*
Tutorial: Measure Theory for Dummies
{{Authority control