HOME

TheInfoList



OR:

The core–mantle boundary (CMB) of Earth lies between the planet's
silicate In chemistry, a silicate is any member of a family of polyatomic anions consisting of silicon and oxygen, usually with the general formula , where . The family includes orthosilicate (), metasilicate (), and pyrosilicate (, ). The name is a ...
mantle A mantle is a piece of clothing, a type of cloak. Several other meanings are derived from that. Mantle may refer to: *Mantle (clothing), a cloak-like garment worn mainly by women as fashionable outerwear **Mantle (vesture), an Eastern Orthodox ve ...
and its liquid
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in ...
-
nickel Nickel is a chemical element with symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive but large pieces are slow t ...
outer core. This boundary is located at approximately 2,891 km (1,796 miles) depth beneath Earth's surface. The boundary is observed via the discontinuity in
seismic wave A seismic wave is a wave of acoustic energy that travels through the Earth. It can result from an earthquake, volcanic eruption, magma movement, a large landslide, and a large man-made explosion that produces low-frequency acoustic ener ...
velocities at that depth due to the differences between the acoustic impedances of the solid mantle and the molten outer core.
P-wave A P wave (primary wave or pressure wave) is one of the two main types of elastic body waves, called seismic waves in seismology. P waves travel faster than other seismic waves and hence are the first signal from an earthquake to arrive at any ...
velocities are much slower in the outer core than in the deep mantle while S-waves do not exist at all in the liquid portion of the core. Recent evidence suggests a distinct boundary layer directly above the CMB possibly made of a novel phase of the basic
perovskite Perovskite (pronunciation: ) is a calcium titanium oxide mineral composed of calcium titanate (chemical formula ). Its name is also applied to the class of compounds which have the same type of crystal structure as (XIIA2+VIB4+X2−3), known a ...
mineralogy of the deep mantle named
post-perovskite Post-perovskite (pPv) is a high-pressure phase of magnesium silicate (MgSiO3). It is composed of the prime oxide constituents of the Earth's rocky mantle (MgO and SiO2), and its pressure and temperature for stability imply that it is likely to occur ...
.
Seismic tomography Seismic tomography or seismotomography is a technique for imaging the subsurface of the Earth with seismic waves produced by earthquakes or explosions. P-, S-, and surface waves can be used for tomographic models of different resolutions based on ...
studies have shown significant irregularities within the boundary zone and appear to be dominated by the African and Pacific
Large Low-Shear-Velocity Provinces Large low-shear-velocity provinces, LLSVPs, also called LLVPs or superplumes, are characteristic structures of parts of the lowermost mantle (the region surrounding the outer core) of Earth. These provinces are characterized by slow shear wave ve ...
(LLSVP). The uppermost section of the outer core is thought to be about 500–1,800 K hotter than the overlying mantle, creating a thermal boundary layer. The boundary is thought to harbor topography, much like Earth's surface, that is supported by solid-state convection within the overlying mantle. Variations in the thermal properties of the core-mantle boundary may affect how the outer core's iron-rich fluids flow, which are ultimately responsible for Earth's magnetic field.


The D″ region

The approx. 200 km thick layer of the lower mantle directly above the boundary is referred to as the ''D″ region'' ("D double-prime" or "D prime prime") and is sometimes included in discussions regarding the core–mantle boundary zone. The D″ name originates from mathematician Keith Bullen's designations for the Earth's layers. His system was to label each layer alphabetically, A through G, with the crust as 'A' and the inner core as 'G'. In his 1942 publication of his model, the entire lower mantle was the D layer. In 1949, Bullen found his 'D' layer to actually be two different layers. The upper part of the D layer, about 1800 km thick, was renamed D′ (D prime) and the lower part (the bottom 200 km) was named D″. Later it was found that D" is non-spherical. In 1993, Czechowski found that inhomogeneities in D" form structures analogous to continents (i.e. core-continents). They move in time and determine some properties of hotspots and
mantle convection Mantle convection is the very slow creeping motion of Earth's solid silicate mantle as convection currents carrying heat from the interior to the planet's surface. The Earth's surface lithosphere rides atop the asthenosphere and the two form ...
. Later research supported this hypothesis.


Seismic discontinuity

A ''seismic discontinuity'' occurs within Earth's interior at a depth of about 2,900 km (1,800 mi) below the surface, where there is an abrupt change in the speed of seismic waves (generated by earthquakes or explosions) that travel through Earth. At this depth, primary seismic waves (P waves) decrease in velocity while secondary seismic waves (S waves) disappear completely. S waves shear material, and cannot transmit through liquids, so it is thought that the unit above the discontinuity is solid, while the unit below is in a liquid or molten form. The discontinuity was discovered by Beno Gutenberg (1889-1960), a seismologist who made several important contributions to the study and understanding of the Earth's interior. The CMB has also been referred to as the
Gutenberg discontinuity {{unreferenced, date=November 2020 The Gutenberg discontinuity occurs within Earth's interior at a depth of about 2,900 km (1,800 mi) below the surface, where there is an abrupt change in the seismic waves (generated by earthquakes or expl ...
, the Oldham-Gutenberg discontinuity, or the Wiechert-Gutenberg discontinuity. In modern times, however, the term Gutenberg discontinuity or the "G" is most commonly used in reference to a decrease in seismic velocity with depth that is sometimes observed at about 100 km below the Earth's oceans.


See also

*
Core–mantle differentiation Core–mantle differentiation is the set of processes that took place during the accretion stage of Earth's evolution (or more generally, of rocky planets) that results in the separation of iron-rich materials that eventually would conform a m ...
* Ultra low velocity zone


References


External links


Earth's Core–Mantle Boundary Has Core-Rigidity Zone
*

{{DEFAULTSORT:Core-mantle boundary Geophysics Structure of the Earth