HOME

TheInfoList



OR:

In physics and engineering, a constitutive equation or constitutive relation is a relation between two physical quantities (especially
kinetic Kinetic (Ancient Greek: κίνησις “kinesis”, movement or to move) may refer to: * Kinetic theory, describing a gas as particles in random motion * Kinetic energy, the energy of an object that it possesses due to its motion Art and ent ...
quantities as related to
kinematic Kinematics is a subfield of physics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies (groups of objects) without considering the forces that cause them to move. Kinematics, as a fie ...
quantities) that is specific to a material or substance, and approximates the response of that material to external stimuli, usually as applied
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
s or forces. They are combined with other equations governing
physical law Scientific laws or laws of science are statements, based on repeated experiments or observations, that describe or predict a range of natural phenomena. The term ''law'' has diverse usage in many cases (approximate, accurate, broad, or narrow) ...
s to solve physical problems; for example in
fluid mechanics Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them. It has applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical and bio ...
the flow of a fluid in a pipe, in solid state physics the response of a crystal to an electric field, or in structural analysis, the connection between applied stresses or loads to strains or
deformation Deformation can refer to: * Deformation (engineering), changes in an object's shape or form due to the application of a force or forces. ** Deformation (physics), such changes considered and analyzed as displacements of continuum bodies. * Defo ...
s. Some constitutive equations are simply phenomenological; others are derived from
first principle In philosophy and science, a first principle is a basic proposition or assumption that cannot be deduced from any other proposition or assumption. First principles in philosophy are from First Cause attitudes and taught by Aristotelians, and nuan ...
s. A common approximate constitutive equation frequently is expressed as a simple proportionality using a parameter taken to be a property of the material, such as
electrical conductivity Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allows ...
or a
spring constant In physics, Hooke's law is an empirical law which states that the force () needed to extend or compress a spring by some distance () scales linearly with respect to that distance—that is, where is a constant factor characteristic of t ...
. However, it is often necessary to account for the directional dependence of the material, and the scalar parameter is generalized to a tensor. Constitutive relations are also modified to account for the rate of response of materials and their
non-linear In mathematics and science, a nonlinear system is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other ...
behavior. See the article Linear response function.


Mechanical properties of matter

The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law. It deals with the case of
linear elastic material Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mech ...
s. Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.
Walter Noll Walter Noll (January 7, 1925 June 6, 2017) was a mathematician, and Professor Emeritus at Carnegie Mellon University. He is best known for developing mathematical tools of classical mechanics, thermodynamics, and continuum mechanics. Biography ...
advanced the use of constitutive equations, clarifying their classification and the role of invariance requirements, constraints, and definitions of terms like "material", "isotropic", "aeolotropic", etc. The class of "constitutive relations" of the form ''stress rate = f (velocity gradient, stress, density)'' was the subject of
Walter Noll Walter Noll (January 7, 1925 June 6, 2017) was a mathematician, and Professor Emeritus at Carnegie Mellon University. He is best known for developing mathematical tools of classical mechanics, thermodynamics, and continuum mechanics. Biography ...
's dissertation in 1954 under
Clifford Truesdell Clifford Ambrose Truesdell III (February 18, 1919 – January 14, 2000) was an American mathematician, natural philosopher, and historian of science. Life Truesdell was born in Los Angeles, California. After high school, he spent two years in E ...
.See Truesdell's account i
Truesdell
''The naturalization and apotheosis of Walter Noll''. See als
Noll's account
and the classic treatise by both authors:
In modern
condensed matter physics Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the ...
, the constitutive equation plays a major role. See Linear constitutive equations and Nonlinear correlation functions.


Definitions


Deformation of solids


Friction

Friction is a complicated phenomenon. Macroscopically, the friction force ''F'' between the interface of two materials can be modelled as proportional to the
reaction force As described by the third of Newton's laws of motion of classical mechanics, all forces occur in pairs such that if one object exerts a force on another object, then the second object exerts an equal and opposite reaction force on the first. The th ...
''R'' at a point of contact between two interfaces through a dimensionless coefficient of friction ''μ''f, which depends on the pair of materials: :F = \mu_\text R. This can be applied to static friction (friction preventing two stationary objects from slipping on their own), kinetic friction (friction between two objects scraping/sliding past each other), or rolling (frictional force which prevents slipping but causes a torque to exert on a round object).


Stress and strain

The stress-strain constitutive relation for
linear material Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mech ...
s is commonly known as Hooke's law. In its simplest form, the law defines the
spring constant In physics, Hooke's law is an empirical law which states that the force () needed to extend or compress a spring by some distance () scales linearly with respect to that distance—that is, where is a constant factor characteristic of t ...
(or elasticity constant) ''k'' in a scalar equation, stating the tensile/compressive force is proportional to the extended (or contracted) displacement ''x'': :F_i=-k x_i meaning the material responds linearly. Equivalently, in terms of the stress ''σ'', Young's modulus ''E'', and strain ''ε'' (dimensionless): :\sigma = E \, \varepsilon In general, forces which deform solids can be normal to a surface of the material (normal forces), or tangential (shear forces), this can be described mathematically using the stress tensor: :\sigma_ = C_ \, \varepsilon_ \, \rightleftharpoons \, \varepsilon_ = S_ \, \sigma_ where ''C'' is the
elasticity tensor In physics, Hooke's law is an empirical law which states that the force () needed to extend or compress a spring by some distance () scales linearly with respect to that distance—that is, where is a constant factor characteristic of ...
and ''S'' is the compliance tensor.


Solid-state deformations

Several classes of deformations in elastic materials are the following: ; Plastic: The applied force induces non-recoverable deformations in the material when the stress (or elastic strain) reaches a critical magnitude, called the yield point. ;
Elastic Elastic is a word often used to describe or identify certain types of elastomer, elastic used in garments or stretchable fabrics. Elastic may also refer to: Alternative name * Rubber band, ring-shaped band of rubber used to hold objects togethe ...
: The material recovers its initial shape after deformation. :;
Viscoelastic In materials science and continuum mechanics, viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials, like water, resist shear flow and strain linearly ...
: If the time-dependent resistive contributions are large, and cannot be neglected. Rubbers and plastics have this property, and certainly do not satisfy Hooke's law. In fact, elastic hysteresis occurs. :; Anelastic: If the material is close to elastic, but the applied force induces additional time-dependent resistive forces (i.e. depend on rate of change of extension/compression, in addition to the extension/compression). Metals and ceramics have this characteristic, but it is usually negligible, although not so much when heating due to friction occurs (such as vibrations or shear stresses in machines). :; Hyperelastic: The applied force induces displacements in the material following a
strain energy density function A strain energy density function or stored energy density function is a scalar-valued function that relates the strain energy density of a material to the deformation gradient. : W = \hat(\boldsymbol) = \hat(\boldsymbol^T\cdot\boldsymbol) = ...
.


Collisions

The relative speed of separation ''v''separation of an object A after a collision with another object B is related to the relative speed of approach ''v''approach by the
coefficient of restitution The coefficient of restitution (COR, also denoted by ''e''), is the ratio of the final to initial relative speed between two objects after they collide. It normally ranges from 0 to 1 where 1 would be a perfectly elastic collision. A perfec ...
, defined by Newton's experimental impact law: : e = \frac which depends on the materials A and B are made from, since the collision involves interactions at the surfaces of A and B. Usually , in which for completely elastic collisions, and for completely inelastic collisions. It is possible for to occur – for
superelastic Pseudoelasticity, sometimes called superelasticity, is an elastic (reversible) response to an applied stress, caused by a phase transformation between the austenitic and martensitic phases of a crystal. It is exhibited in shape-memory alloys. O ...
(or explosive) collisions.


Deformation of fluids

The drag equation gives the
drag force In fluid dynamics, drag (sometimes called air resistance, a type of friction, or fluid resistance, another type of friction or fluid friction) is a force acting opposite to the relative motion of any object moving with respect to a surrounding flu ...
''D'' on an object of cross-section area ''A'' moving through a fluid of density ''ρ'' at velocity ''v'' (relative to the fluid) :D=\fracc_d \rho A v^2 where the drag coefficient (dimensionless) ''cd'' depends on the geometry of the object and the drag forces at the interface between the fluid and object. For a Newtonian fluid of viscosity ''μ'', the shear stress ''τ'' is linearly related to the strain rate (transverse flow velocity gradient) ∂''u''/∂''y'' (units ''s''−1). In a uniform
shear flow The term shear flow is used in solid mechanics as well as in fluid dynamics. The expression ''shear flow'' is used to indicate: * a shear stress over a distance in a thin-walled structure (in solid mechanics);Higdon, Ohlsen, Stiles and Weese (1960 ...
: :\tau = \mu \frac, with ''u''(''y'') the variation of the flow velocity ''u'' in the cross-flow (transverse) direction ''y''. In general, for a Newtonian fluid, the relationship between the elements ''τ''''ij'' of the shear stress tensor and the deformation of the fluid is given by :\tau_ = 2 \mu \left( e_ - \frac13 \Delta \delta_ \right) with e_=\frac12 \left( \frac + \frac \right) and \Delta = \sum_k e_ = \text\; \mathbf, where ''v''''i'' are the components of the flow velocity vector in the corresponding ''x''''i'' coordinate directions, ''e''''ij'' are the components of the strain rate tensor, Δ is the
volumetric strain In continuum mechanics, the infinitesimal strain theory is a mathematical approach to the description of the deformation of a solid body in which the displacements of the material particles are assumed to be much smaller (indeed, infinitesimall ...
rate (or dilatation rate) and ''δ''''ij'' is the
Kronecker delta In mathematics, the Kronecker delta (named after Leopold Kronecker) is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise: \delta_ = \begin 0 &\text i \neq j, \\ 1 & ...
. The '' ideal gas law'' is a constitutive relation in the sense the pressure ''p'' and volume ''V'' are related to the temperature ''T'', via the number of moles ''n'' of gas: :pV = nRT where ''R'' is the gas constant (J⋅K−1⋅mol−1).


Electromagnetism


Constitutive equations in electromagnetism and related areas

In both classical and
quantum physics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, q ...
, the precise dynamics of a system form a set of coupled
differential equation In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, an ...
s, which are almost always too complicated to be solved exactly, even at the level of
statistical mechanics In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic be ...
. In the context of electromagnetism, this remark applies to not only the dynamics of free charges and currents (which enter Maxwell's equations directly), but also the dynamics of bound charges and currents (which enter Maxwell's equations through the constitutive relations). As a result, various approximation schemes are typically used. For example, in real materials, complex transport equations must be solved to determine the time and spatial response of charges, for example, the
Boltzmann equation The Boltzmann equation or Boltzmann transport equation (BTE) describes the statistical behaviour of a thermodynamic system not in a state of equilibrium, devised by Ludwig Boltzmann in 1872.Encyclopaedia of Physics (2nd Edition), R. G. Lerne ...
or the Fokker–Planck equation or the
Navier–Stokes equations In physics, the Navier–Stokes equations ( ) are partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Anglo-Irish physicist and mathematician Geo ...
. For example, see magnetohydrodynamics, fluid dynamics,
electrohydrodynamics Electrohydrodynamics (EHD), also known as electro-fluid-dynamics (EFD) or electrokinetics, is the study of the dynamics of electrically charged fluids. It is the study of the motions of ionized particles or molecules and their interactions with ...
, superconductivity,
plasma modeling Plasma modeling refers to solving equations of motion that describe the state of a plasma. It is generally coupled with Maxwell's equations for electromagnetic fields or Poisson's equation for electrostatic fields. There are several main types of p ...
. An entire physical apparatus for dealing with these matters has developed. See for example,
linear response theory A linear response function describes the input-output relationship of a signal transducer such as a radio turning electromagnetic waves into music or a neuron turning synaptic input into a response. Because of its many applications in information ...
,
Green–Kubo relations The Green–Kubo relations (Melville S. Green 1954, Ryogo Kubo 1957) give the exact mathematical expression for transport coefficients \gamma in terms of integrals of time correlation functions: :\gamma = \int_0^\infty \left\langle \dot(t) \dot(0 ...
and Green's function (many-body theory). These complex theories provide detailed formulas for the constitutive relations describing the electrical response of various materials, such as permittivities, permeabilities, conductivities and so forth. It is necessary to specify the relations between displacement field D and E, and the magnetic H-field H and B, before doing calculations in electromagnetism (i.e. applying Maxwell's macroscopic equations). These equations specify the response of bound charge and current to the applied fields and are called constitutive relations. Determining the constitutive relationship between the auxiliary fields D and H and the E and B fields starts with the definition of the auxiliary fields themselves: :\begin \mathbf(\mathbf, t) &= \varepsilon_0 \mathbf(\mathbf, t) + \mathbf(\mathbf, t) \\ \mathbf(\mathbf, t) &= \frac \mathbf(\mathbf, t) - \mathbf(\mathbf, t), \end where P is the
polarization Polarization or polarisation may refer to: Mathematics *Polarization of an Abelian variety, in the mathematics of complex manifolds *Polarization of an algebraic form, a technique for expressing a homogeneous polynomial in a simpler fashion by ...
field and M is the magnetization field which are defined in terms of microscopic bound charges and bound current respectively. Before getting to how to calculate M and P it is useful to examine the following special cases.


Without magnetic or dielectric materials

In the absence of magnetic or dielectric materials, the constitutive relations are simple: :\mathbf = \varepsilon_0\mathbf ,\quad \mathbf = \mathbf/\mu_0 where ''ε''0 and ''μ''0 are two universal constants, called the permittivity of free space and permeability of free space, respectively.


Isotropic linear materials

In an (
isotropic Isotropy is uniformity in all orientations; it is derived . Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix ' or ', hence ''anisotropy''. ''Anisotropy'' is also used to describe ...
) linear material, where P is proportional to E, and M is proportional to B, the constitutive relations are also straightforward. In terms of the polarization P and the magnetization M they are: :\mathbf = \varepsilon_0\chi_e\mathbf ,\quad \mathbf = \chi_m\mathbf, where ''χ''e and ''χ''m are the
electric Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described ...
and
magnetic Magnetism is the class of physical attributes that are mediated by a magnetic field, which refers to the capacity to induce attractive and repulsive phenomena in other entities. Electric currents and the magnetic moments of elementary particles ...
susceptibilities of a given material respectively. In terms of D and H the constitutive relations are: :\mathbf = \varepsilon\mathbf ,\quad \mathbf = \mathbf/\mu, where ''ε'' and ''μ'' are constants (which depend on the material), called the permittivity and permeability, respectively, of the material. These are related to the susceptibilities by: :\varepsilon/\varepsilon_0 = \varepsilon_r = \chi_e + 1 ,\quad \mu / \mu_0 = \mu_r = \chi_m + 1


General case

For real-world materials, the constitutive relations are not linear, except approximately. Calculating the constitutive relations from first principles involves determining how P and M are created from a given E and B.The ''free'' charges and currents respond to the fields through the
Lorentz force In physics (specifically in electromagnetism) the Lorentz force (or electromagnetic force) is the combination of electric and magnetic force on a point charge due to electromagnetic fields. A particle of charge moving with a velocity in an elect ...
law and this response is calculated at a fundamental level using mechanics. The response of ''bound'' charges and currents is dealt with using grosser methods subsumed under the notions of magnetization and polarization. Depending upon the problem, one may choose to have ''no'' free charges whatsoever.
These relations may be empirical (based directly upon measurements), or theoretical (based upon
statistical mechanics In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic be ...
, transport theory or other tools of
condensed matter physics Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the ...
). The detail employed may be
macroscopic The macroscopic scale is the length scale on which objects or phenomena are large enough to be visible with the naked eye, without magnifying optical instruments. It is the opposite of microscopic. Overview When applied to physical phenomena a ...
or microscopic, depending upon the level necessary to the problem under scrutiny. In general, the constitutive relations can usually still be written: :\mathbf = \varepsilon\mathbf ,\quad \mathbf = \mu^\mathbf but ''ε'' and ''μ'' are not, in general, simple constants, but rather functions of E, B, position and time, and tensorial in nature. Examples are: As a variation of these examples, in general materials are bianisotropic where D and B depend on both E and H, through the additional ''coupling constants'' ''ξ'' and ''ζ'': : \mathbf=\varepsilon \mathbf + \xi \mathbf \,,\quad \mathbf = \mu \mathbf + \zeta \mathbf. In practice, some materials properties have a negligible impact in particular circumstances, permitting neglect of small effects. For example: optical nonlinearities can be neglected for low field strengths; material dispersion is unimportant when frequency is limited to a narrow
bandwidth Bandwidth commonly refers to: * Bandwidth (signal processing) or ''analog bandwidth'', ''frequency bandwidth'', or ''radio bandwidth'', a measure of the width of a frequency range * Bandwidth (computing), the rate of data transfer, bit rate or thr ...
; material absorption can be neglected for wavelengths for which a material is transparent; and
metal A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typica ...
s with finite conductivity often are approximated at
microwave Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively. Different sources define different frequency rang ...
or longer wavelengths as perfect metals with infinite conductivity (forming hard barriers with zero skin depth of field penetration). Some man-made materials such as metamaterials and photonic crystals are designed to have customized permittivity and permeability.


Calculation of constitutive relations

The theoretical calculation of a material's constitutive equations is a common, important, and sometimes difficult task in theoretical
condensed-matter physics Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the sub ...
and materials science. In general, the constitutive equations are theoretically determined by calculating how a molecule responds to the local fields through the
Lorentz force In physics (specifically in electromagnetism) the Lorentz force (or electromagnetic force) is the combination of electric and magnetic force on a point charge due to electromagnetic fields. A particle of charge moving with a velocity in an elect ...
. Other forces may need to be modeled as well such as lattice vibrations in crystals or bond forces. Including all of the forces leads to changes in the molecule which are used to calculate P and M as a function of the local fields. The local fields differ from the applied fields due to the fields produced by the polarization and magnetization of nearby material; an effect which also needs to be modeled. Further, real materials are not continuous media; the local fields of real materials vary wildly on the atomic scale. The fields need to be averaged over a suitable volume to form a continuum approximation. These continuum approximations often require some type of quantum mechanical analysis such as quantum field theory as applied to
condensed matter physics Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the ...
. See, for example, density functional theory,
Green–Kubo relations The Green–Kubo relations (Melville S. Green 1954, Ryogo Kubo 1957) give the exact mathematical expression for transport coefficients \gamma in terms of integrals of time correlation functions: :\gamma = \int_0^\infty \left\langle \dot(t) \dot(0 ...
and
Green's function In mathematics, a Green's function is the impulse response of an inhomogeneous linear differential operator defined on a domain with specified initial conditions or boundary conditions. This means that if \operatorname is the linear differentia ...
. A different set of ''homogenization methods'' (evolving from a tradition in treating materials such as conglomerates and
laminate Lamination is the technique/process of manufacturing a material in multiple layers, so that the composite material achieves improved strength, stability, sound insulation, appearance, or other properties from the use of the differing material ...
s) are based upon approximation of an inhomogeneous material by a homogeneous ''
effective medium In materials science, effective medium approximations (EMA) or effective medium theory (EMT) pertain to analytical or theoretical modeling that describes the macroscopic properties of composite materials. EMAs or EMTs are developed from averagi ...
'' Aspnes, D.E., "Local-field effects and effective-medium theory: A microscopic perspective", ''Am. J. Phys.'' 50, pp. 704–709 (1982). (valid for excitations with wavelengths much larger than the scale of the inhomogeneity). The theoretical modeling of the continuum-approximation properties of many real materials often rely upon experimental measurement as well. For example, ''ε'' of an insulator at low frequencies can be measured by making it into a
parallel-plate capacitor A capacitor is a device that stores electrical energy in an electric field by virtue of accumulating electric charges on two close surfaces insulated from each other. It is a passive electronic component with two terminals. The effect of a c ...
, and ''ε'' at optical-light frequencies is often measured by
ellipsometry Ellipsometry is an optical technique for investigating the dielectric properties (complex refractive index or dielectric function) of thin films. Ellipsometry measures the change of polarization upon reflection or transmission and compares it to ...
.


Thermoelectric and electromagnetic properties of matter

These constitutive equations are often used in
crystallography Crystallography is the experimental science of determining the arrangement of atoms in crystalline solids. Crystallography is a fundamental subject in the fields of materials science and solid-state physics (condensed matter physics). The wor ...
, a field of solid-state physics.


Photonics


Refractive index

The (absolute) refractive index of a medium ''n'' (dimensionless) is an inherently important property of geometric and physical optics defined as the ratio of the luminal speed in vacuum ''c''0 to that in the medium ''c'': : n = \frac = \sqrt = \sqrt where ''ε'' is the permittivity and ''ε''r the relative permittivity of the medium, likewise ''μ'' is the permeability and ''μ''r are the relative permeability of the medium. The vacuum permittivity is ''ε''0 and vacuum permeability is ''μ''0. In general, ''n'' (also ''ε''r) are
complex numbers In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a ...
. The relative refractive index is defined as the ratio of the two refractive indices. Absolute is for on material, relative applies to every possible pair of interfaces; : n_ = \frac


Speed of light in matter

As a consequence of the definition, the speed of light in matter is :c = \frac for special case of vacuum; and , :c_0 = \frac


Piezooptic effect

The piezooptic effect relates the stresses in solids ''σ'' to the dielectric impermeability ''a'', which are coupled by a fourth-rank tensor called the piezooptic coefficient Π (units K−1): :a_ = \Pi_\sigma_


Transport phenomena


Definitions


Definitive laws

There are several laws which describe the transport of matter, or properties of it, in an almost identical way. In every case, in words they read: :''Flux (density) is proportional to a gradient, the constant of proportionality is the characteristic of the material.'' In general the constant must be replaced by a 2nd rank tensor, to account for directional dependences of the material.


See also

*
Principle of material objectivity Walter Noll (January 7, 1925 June 6, 2017) was a mathematician, and Professor Emeritus at Carnegie Mellon University. He is best known for developing mathematical tools of classical mechanics, thermodynamics, and continuum mechanics. Biography B ...
*
Rheology Rheology (; ) is the study of the flow of matter, primarily in a fluid (liquid or gas) state, but also as "soft solids" or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an appli ...


Notes


References

{{Reflist, 30em Elasticity (physics) Equations of physics Electric and magnetic fields in matter