HOME

TheInfoList



OR:

Conductivity (or specific conductance) of an
electrolyte An electrolyte is a medium containing ions that is electrically conducting through the movement of those ions, but not conducting electrons. This includes most soluble salts, acids, and bases dissolved in a polar solvent, such as water. Upon ...
solution is a measure of its ability to conduct electricity. The SI unit of conductivity is
Siemens Siemens AG ( ) is a German multinational conglomerate corporation and the largest industrial manufacturing company in Europe headquartered in Munich with branch offices abroad. The principal divisions of the corporation are ''Industry'', ''E ...
per meter (S/m). Conductivity measurements are used routinely in many industrial and
environmental A biophysical environment is a biotic and abiotic surrounding of an organism or population, and consequently includes the factors that have an influence in their survival, development, and evolution. A biophysical environment can vary in scal ...
applications as a fast, inexpensive and reliable way of measuring the ionic content in a solution. For example, the measurement of product conductivity is a typical way to monitor and continuously trend the performance of water purification systems. In many cases, conductivity is linked directly to the total dissolved solids (TDS). High quality deionized water has a conductivity of about 0.05 μS/cm at 25 °C, typical drinking water is in the range of 200–800 μS/cm, while sea water is about 50 mS/cm ncorrect according to source(or 50,000 μS/cm). Conductivity is traditionally determined by connecting the electrolyte in a
Wheatstone bridge A Wheatstone bridge is an electrical circuit used to measure an unknown electrical resistance by balancing two legs of a bridge circuit, one leg of which includes the unknown component. The primary benefit of the circuit is its ability to provid ...
. Dilute solutions follow Kohlrausch's Laws of concentration dependence and additivity of ionic contributions. Lars Onsager gave a theoretical explanation of Kohlrausch's law by extending
Debye–Hückel theory The Debye–Hückel theory was proposed by Peter Debye and Erich Hückel as a theoretical explanation for departures from ideality in solutions of electrolytes and plasmas. It is a linearized Poisson–Boltzmann model, which assumes an extrem ...
.


Units

The SI unit of conductivity is S/m and, unless otherwise qualified, it refers to 25 °C. More generally encountered is the traditional unit of μS/cm. The commonly used standard cell has a width of 1 cm, and thus for very pure water in equilibrium with air would have a resistance of about 106 ohms, known as a
megohm Ohm (symbol Ω) is a unit of electrical resistance named after Georg Ohm. Ohm or OHM may also refer to: People * Georg Ohm (1789–1854), German physicist and namesake of the term ''ohm'' * Germán Ohm (born 1936), Mexican boxer * Jörg Ohm (b ...
.
Ultra-pure water Ultrapure water (UPW), high-purity water or highly purified water (HPW) is water that has been purified to uncommonly stringent specifications. Ultrapure water is a term commonly used in manufacturing to emphasize the fact that the water is treate ...
could achieve 18 megohms or more. Thus in the past, megohm-cm was used, sometimes abbreviated to "megohm". Sometimes, conductivity is given in "microsiemens" (omitting the distance term in the unit). While this is an error, it can often be assumed to be equal to the traditional μS/cm. The conversion of conductivity to the total dissolved solids depends on the chemical composition of the sample and can vary between 0.54 and 0.96. Typically, the conversion is done assuming that the solid is sodium chloride; 1 μS/cm is then equivalent to about 0.64 mg of NaCl per kg of water. Molar conductivity has the SI unit S m2 mol−1. Older publications use the unit Ω−1 cm2 mol−1.


Measurement

The
electrical conductivity Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allows ...
of a solution of an
electrolyte An electrolyte is a medium containing ions that is electrically conducting through the movement of those ions, but not conducting electrons. This includes most soluble salts, acids, and bases dissolved in a polar solvent, such as water. Upon ...
is measured by determining the resistance of the solution between two flat or cylindrical
electrode An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or air). Electrodes are essential parts of batteries that can consist of a variety of materials ...
s separated by a fixed distance. An alternating voltage is generally used in order to minimize water
electrolysis In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from n ...
. The resistance is measured by a conductivity meter. Typical frequencies used are in the range 1–3 kHz. The dependence on the frequency is usually small, but may become appreciable at very high frequencies, an effect known as the Debye–Falkenhagen effect. A wide variety of instrumentation is commercially available. Most commonly, two types of electrode sensors are used, electrode-based sensors and inductive sensors. Electrode sensors with a static design are suitable for low and moderate conductivities, and exist in various types, having either two or four electrodes, where electrodes can be arrange oppositely, flat or in a cylinder. Electrode cells with a flexible design, where the distance between two oppositely arranged electrodes can be varied, offer high accuracy and can also be used for the measurement of highly conductive media. Inductive sensors are suitable for harsh chemical conditions but require larger sample volumes than electrode sensors. Conductivity sensors are typically calibrated with KCl solutions of known conductivity. Electrolytic conductivity is highly temperature dependent but many commercial systems offer automatic temperature correction. Tables of reference conductivities are available for many common solutions.


Definitions

Resistance, , is proportional to the distance, , between the electrodes and is inversely proportional to the cross-sectional area of the sample, (noted on the Figure above). Writing (rho) for the specific resistance, or resistivity. :R=\rho\frac In practice the conductivity cell is calibrated by using solutions of known specific resistance, , so the individual quantities and need not be known precisely, but only their ratio. If the resistance of the calibration solution is , a cell-constant, defined as the ratio of and ( = ), is derived. :R^* = \rho \times C The specific conductance (conductivity), (kappa) is the reciprocal of the specific resistance. :\kappa =\frac=\frac Conductivity is also temperature-dependent. Sometimes the conductance (reciprocical of the resistance) is denoted as = . Then the specific conductance (kappa) is: :\kappa = C \times G


Theory

The specific conductance of a solution containing one electrolyte depends on the concentration of the electrolyte. Therefore, it is convenient to divide the specific conductance by concentration. This quotient, termed molar conductivity, is denoted by :\Lambda_\mathrm=\frac


Strong electrolytes

Strong electrolytes are hypothesized to dissociate completely in solution. The conductivity of a solution of a strong electrolyte at low concentration follows
Kohlrausch's Law The molar conductivity of an electrolyte solution is defined as its conductivity divided by its molar concentration. : \Lambda_\text = \frac, where: : ''κ'' is the measured conductivity (formerly known as specific conductance), : ''c'' is the mol ...
:\Lambda_\mathrm =\Lambda_\mathrm^0-K\sqrt where is known as the limiting molar conductivity, is an empirical constant and is the electrolyte concentration. (Limiting here means "at the limit of the infinite dilution".) In effect, the observed conductivity of a strong electrolyte becomes directly proportional to concentration, at sufficiently low concentrations i.e. when :\Lambda_\mathrm^0 \gg K\sqrt As the concentration is increased however, the conductivity no longer rises in proportion. Moreover, Kohlrausch also found that the limiting conductivity of an electrolyte; : and are the limiting molar conductivities of the individual ions. The following table gives values for the limiting molar conductivities for some selected ions. An interpretation of these results was based on the theory of Debye and Hückel, yielding the Debye–Hückel–Onsager theory: :\Lambda_\mathrm =\Lambda_\mathrm^0-\left(A+B\Lambda_\mathrm^0 \right)\sqrt where and are constants that depend only on known quantities such as temperature, the charges on the ions and the
dielectric constant The relative permittivity (in older texts, dielectric constant) is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insula ...
and
viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the int ...
of the solvent. As the name suggests, this is an extension of the
Debye–Hückel theory The Debye–Hückel theory was proposed by Peter Debye and Erich Hückel as a theoretical explanation for departures from ideality in solutions of electrolytes and plasmas. It is a linearized Poisson–Boltzmann model, which assumes an extrem ...
, due to Onsager. It is very successful for solutions at low concentration.


Weak electrolytes

A weak electrolyte is one that is never fully dissociated (there are a mixture of ions and complete molecules in equilibrium). In this case there is no limit of dilution below which the relationship between conductivity and concentration becomes linear. Instead, the solution becomes ever more fully dissociated at weaker concentrations, and for low concentrations of "well behaved" weak electrolytes, the degree of dissociation of the weak electrolyte becomes proportional to the inverse square root of the concentration. Typical weak electrolytes are
weak acid Acid strength is the tendency of an acid, symbolised by the chemical formula HA, to dissociate into a proton, H+, and an anion, A-. The dissociation of a strong acid in solution is effectively complete, except in its most concentrated solutions ...
s and weak bases. The concentration of ions in a solution of a weak electrolyte is less than the concentration of the electrolyte itself. For acids and bases the concentrations can be calculated when the value or values of the
acid dissociation constant In chemistry, an acid dissociation constant (also known as acidity constant, or acid-ionization constant; denoted ) is a quantitative measure of the strength of an acid in solution. It is the equilibrium constant for a chemical reaction :HA ...
are known. For a monoprotic acid, HA, obeying the inverse square root law, with a dissociation constant , an explicit expression for the conductivity as a function of concentration, , known as
Ostwald's dilution law Wilhelm Ostwald’s dilution law is a relationship proposed in 1888 between the dissociation constant ' and the degree of dissociation ' of a weak electrolyte. The law takes the form :K_d = \cfrac = \frac \cdot c_0 Where the square brackets den ...
, can be obtained. :\frac=\frac+\frac Various solvents exhibit the same dissociation if the ratio of relative permittivities equals the ratio cubic roots of concentrations of the electrolytes (Walden's rule).


Higher concentrations

Both Kohlrausch's law and the Debye–Hückel–Onsager equation break down as the concentration of the electrolyte increases above a certain value. The reason for this is that as concentration increases the average distance between cation and anion decreases, so that there is more interactions between close ions. Whether this constitutes ion association is a moot point. However, it has often been assumed that cation and anion interact to form an ion pair. So, an "ion-association" constant , can be derived for the association equilibrium between ions A+ and B: : A+ + B A+B with = Davies describes the results of such calculations in great detail, but states that should not necessarily be thought of as a true
equilibrium constant The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency ...
, rather, the inclusion of an "ion-association" term is useful in extending the range of good agreement between theory and experimental conductivity data. Various attempts have been made to extend Onsager's treatment to more concentrated solutions. The existence of a so-called ''conductance minimum'' in solvents having the relative permittivity under 60 has proved to be a controversial subject as regards interpretation. Fuoss and Kraus suggested that it is caused by the formation of ion triplets, and this suggestion has received some support recently. Other developments on this topic have been done by
Theodore Shedlovsky Dr. Theodore Shedlovsky (October 29, 1898 – November 5, 1976) was a Russian-born American chemist, a member of the National Academy of Sciences, noted for his work of applying electrochemistry Electrochemistry is the branch of physical chemistr ...
, E. Pitts, R. M. Fuoss, Fuoss and Shedlovsky, Fuoss and Onsager.


Mixed solvents systems

The limiting equivalent conductivity of solutions based on mixed solvents like water alcohol has minima depending on the nature of alcohol. For methanol the minimum is at 15 molar % water, and for the ethanol at 6 molar % water.


Conductivity versus temperature

Generally the conductivity of a solution increases with temperature, as the mobility of the ions increases. For comparison purposes reference values are reported at an agreed temperature, usually 298 K (≈ 25 °C or 77 °F), although occasionally 20 °C (68 °F) is used. So called 'compensated' measurements are made at a convenient temperature but the value reported is a calculated value of the expected value of conductivity of the solution, as if it had been measured at the reference temperature. Basic compensation is normally done by assuming a linear increase of conductivity versus temperature of typically 2% per kelvin. This value is broadly applicable for most salts at room temperature. Determination of the precise temperature coefficient for a specific solution is simple and instruments are typically capable of applying the derived coefficient (i.e. other than 2%). Measurements of conductivity \sigma versus temperature can be used to determine the
activation energy In chemistry and physics, activation energy is the minimum amount of energy that must be provided for compounds to result in a chemical reaction. The activation energy (''E''a) of a reaction is measured in joules per mole (J/mol), kilojoules p ...
E_A, using the
Arrhenius equation In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates. The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in ...
: : \sigma = \sigma_0 e^ where \sigma_0 is the exponential prefactor, the gas constant, and the
absolute temperature Thermodynamic temperature is a quantity defined in thermodynamics as distinct from kinetic theory or statistical mechanics. Historically, thermodynamic temperature was defined by Kelvin in terms of a macroscopic relation between thermodynamic ...
in
Kelvin The kelvin, symbol K, is the primary unit of temperature in the International System of Units (SI), used alongside its prefixed forms and the degree Celsius. It is named after the Belfast-born and University of Glasgow-based engineer and ...
.


Solvent isotopic effect

The change in conductivity due to the isotope effect for deuterated electrolytes is sizable.


Applications

Despite the difficulty of theoretical interpretation, measured conductivity is a good indicator of the presence or absence of conductive ions in solution, and measurements are used extensively in many industries. For example, conductivity measurements are used to monitor quality in public water supplies, in hospitals, in boiler water and industries which depend on water quality such as brewing. This type of measurement is not ion-specific; it can sometimes be used to determine the amount of total dissolved solids (TDS) if the composition of the solution and its conductivity behavior are known. Conductivity measurements made to determine water purity will not respond to non conductive contaminants (many organic compounds fall into this category), therefore additional purity tests may be required depending on application. Applications of TDS measurements are not limited to industrial use; many people use TDS as an indicator of the purity of their drinking water. Additionally, aquarium enthusiasts are concerned with TDS, both for freshwater and salt water aquariums. Many fish and invertebrates require quite narrow parameters for dissolved solids. Especially for successful breeding of some invertebrates normally kept in freshwater aquariums—snails and shrimp primarily—brackish water with higher TDS, specifically higher salinity, water is required. While the adults of a given species may thrive in freshwater, this is not always true for the young and some species will not breed at all in non-brackish water. Sometimes, conductivity measurements are linked with other methods to increase the sensitivity of detection of specific types of ions. For example, in the boiler water technology, the
boiler blowdown Boiler blowdown is water intentionally wasted from a boiler to avoid concentration of impurities during continuing evaporation of steam. The water is blown out of the boiler with some force by steam pressure within the boiler. Bottom blowdown used ...
is continuously monitored for "cation conductivity", which is the conductivity of the water after it has been passed through a cation exchange resin. This is a sensitive method of monitoring anion impurities in the boiler water in the presence of excess cations (those of the alkalizing agent usually used for water treatment). The sensitivity of this method relies on the high mobility of H+ in comparison with the mobility of other cations or anions. Beyond cation conductivity, there are analytical instruments designed to measure
Degas conductivity Degas conductivity is used as an indicator of water quality in the water/steam cycle of power stations. Excessive conductivity values often indicate high corrosion potential, especially with certain ions such as chloride and acetate ions. These can ...
, where conductivity is measured after dissolved carbon dioxide has been removed from the sample, either through reboiling or dynamic degassing. Conductivity detectors are commonly used with ion chromatography.


See also

*
Einstein relation (kinetic theory) In physics (specifically, the kinetic theory of gases), the Einstein relation is a previously unexpected connection revealed independently by William Sutherland in 1904, Albert Einstein in 1905, and by Marian Smoluchowski in 1906 in their works o ...
* Born equation * Debye–Falkenhagen effect * Law of dilution *
Ion transport number In chemistry, ion transport number, also called the transference number, is the fraction of the total electric current carried in an electrolyte by a given ionic species : :t_i = \frac Differences in transport number arise from differences in ...
* Ionic atmosphere * Wien effect * Conductimetric titration - methods to determine the equivalence point


References


Further reading

* Hans Falkenhagen, ''Theorie der Elektrolyte'', S. Hirzel Verlag, Leipzig, 1971 *
Conductivity of concentrated solutions of electrolytes in methyl and ethyl alcohols

Concentrated solutions and ionic cloud model

H. L. Friedman, F. Franks, Aqueous Simple Electrolytes Solutions
{{Authority control Electrochemical concepts Physical chemistry