HOME

TheInfoList



OR:

In mathematics, a
binary operation In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, an internal binary op ...
is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many
mathematical proof A mathematical proof is an inferential argument for a mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proo ...
s depend on it. Most familiar as the name of the property that says something like or , the property can also be used in more advanced settings. The name is needed because there are operations, such as division and subtraction, that do not have it (for example, ); such operations are ''not'' commutative, and so are referred to as ''noncommutative operations''. The idea that simple operations, such as the multiplication and
addition Addition (usually signified by the plus symbol ) is one of the four basic operations of arithmetic, the other three being subtraction, multiplication and division. The addition of two whole numbers results in the total amount or '' sum'' of ...
of numbers, are commutative was for many years implicitly assumed. Thus, this property was not named until the 19th century, when mathematics started to become formalized. A similar property exists for
binary relation In mathematics, a binary relation associates elements of one set, called the ''domain'', with elements of another set, called the ''codomain''. A binary relation over sets and is a new set of ordered pairs consisting of elements in and i ...
s; a binary relation is said to be
symmetric Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definit ...
if the relation applies regardless of the order of its operands; for example,
equality Equality may refer to: Society * Political equality, in which all members of a society are of equal standing ** Consociationalism, in which an ethnically, religiously, or linguistically divided state functions by cooperation of each group's elite ...
is symmetric as two equal mathematical objects are equal regardless of their order.


Mathematical definitions

A
binary operation In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, an internal binary op ...
* on a
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
''S'' is called ''commutative'' ifKrowne, p.1 x * y = y * x\qquad\mboxx,y\in S. An operation that does not satisfy the above property is called ''non-commutative''. One says that ''commutes'' with or that and ''commute'' under * if x * y = y * x. In other words, an operation is commutative if every two elements commute.


Examples


Commutative operations

*
Addition Addition (usually signified by the plus symbol ) is one of the four basic operations of arithmetic, the other three being subtraction, multiplication and division. The addition of two whole numbers results in the total amount or '' sum'' of ...
and multiplication are commutative in most number systems, and, in particular, between natural numbers, integers, rational numbers, real numbers and complex numbers. This is also true in every
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
. * Addition is commutative in every vector space and in every
algebra Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary a ...
. *
Union Union commonly refers to: * Trade union, an organization of workers * Union (set theory), in mathematics, a fundamental operation on sets Union may also refer to: Arts and entertainment Music * Union (band), an American rock group ** ''U ...
and intersection are commutative operations on
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
s. * " And" and " or" are commutative
logical operation In logic, a logical connective (also called a logical operator, sentential connective, or sentential operator) is a logical constant. They can be used to connect logical formulas. For instance in the syntax of propositional logic, the binary co ...
s.


Noncommutative operations

Some noncommutative binary operations:


Division, subtraction, and exponentiation

Division is noncommutative, since 1 \div 2 \neq 2 \div 1. Subtraction is noncommutative, since 0 - 1 \neq 1 - 0. However it is classified more precisely as
anti-commutative In mathematics, anticommutativity is a specific property of some non- commutative mathematical operations. Swapping the position of two arguments of an antisymmetric operation yields a result which is the ''inverse'' of the result with unswappe ...
, since 0 - 1 = - (1 - 0). Exponentiation is noncommutative, since 2^3\neq3^2.


Truth functions

Some
truth function In logic, a truth function is a function that accepts truth values as input and produces a unique truth value as output. In other words: The input and output of a truth function are all truth values; a truth function will always output exactly o ...
s are noncommutative, since the
truth table A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra, boolean functions, and propositional calculus—which sets out the functional values of logical expressions on each of their functional argumen ...
s for the functions are different when one changes the order of the operands. For example, the truth tables for and are :


Function composition of linear functions

Function composition of
linear function In mathematics, the term linear function refers to two distinct but related notions: * In calculus and related areas, a linear function is a function whose graph is a straight line, that is, a polynomial function of degree zero or one. For dist ...
s from the
real numbers In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
to the real numbers is almost always noncommutative. For example, let f(x)=2x+1 and g(x)=3x+7. Then :(f \circ g)(x) = f(g(x)) = 2(3x+7)+1 = 6x+15 and :(g \circ f)(x) = g(f(x)) = 3(2x+1)+7 = 6x+10 This also applies more generally for linear and
affine transformation In Euclidean geometry, an affine transformation or affinity (from the Latin, ''affinis'', "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles. More generally, ...
s from a vector space to itself (see below for the Matrix representation).


Matrix multiplication

Matrix multiplication In mathematics, particularly in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the ...
of square matrices is almost always noncommutative, for example: : \begin 0 & 2 \\ 0 & 1 \end = \begin 1 & 1 \\ 0 & 1 \end \begin 0 & 1 \\ 0 & 1 \end \neq \begin 0 & 1 \\ 0 & 1 \end \begin 1 & 1 \\ 0 & 1 \end = \begin 0 & 1 \\ 0 & 1 \end


Vector product

The vector product (or
cross product In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here E), and is d ...
) of two vectors in three dimensions is
anti-commutative In mathematics, anticommutativity is a specific property of some non- commutative mathematical operations. Swapping the position of two arguments of an antisymmetric operation yields a result which is the ''inverse'' of the result with unswappe ...
; i.e., ''b'' × ''a'' = −(''a'' × ''b'').


History and etymology

Records of the implicit use of the commutative property go back to ancient times. The Egyptians used the commutative property of multiplication to simplify computing products.
Euclid Euclid (; grc-gre, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the ''Elements'' treatise, which established the foundations of ge ...
is known to have assumed the commutative property of multiplication in his book ''Elements''. Formal uses of the commutative property arose in the late 18th and early 19th centuries, when mathematicians began to work on a theory of functions. Today the commutative property is a well-known and basic property used in most branches of mathematics. The first recorded use of the term ''commutative'' was in a memoir by François Servois in 1814, which used the word ''commutatives'' when describing functions that have what is now called the commutative property. The word is a combination of the French word ''commuter'' meaning "to substitute or switch" and the suffix ''-ative'' meaning "tending to" so the word literally means "tending to substitute or switch". The term then appeared in English in 1838. in
Duncan Farquharson Gregory Duncan Farquharson Gregory (13 April 181323 February 1844) was a Scottish mathematician. Education Gregory was born in Aberdeen on 13 April 1813, the youngest son of Isabella Macleod (1772–1847) and James Gregory (1753–1821). He was taught ...
's article entitled "On the real nature of symbolical algebra" published in 1840 in the Transactions of the Royal Society of Edinburgh.


Propositional logic


Rule of replacement

In truth-functional propositional logic, ''commutation'', or ''commutativity'' refer to two valid rules of replacement. The rules allow one to transpose propositional variables within logical expressions in logical proofs. The rules are: :(P \lor Q) \Leftrightarrow (Q \lor P) and :(P \land Q) \Leftrightarrow (Q \land P) where "\Leftrightarrow" is a metalogical symbol representing "can be replaced in a proof with".


Truth functional connectives

''Commutativity'' is a property of some
logical connective In logic, a logical connective (also called a logical operator, sentential connective, or sentential operator) is a logical constant. They can be used to connect logical formulas. For instance in the syntax of propositional logic, the binary co ...
s of truth functional propositional logic. The following logical equivalences demonstrate that commutativity is a property of particular connectives. The following are truth-functional tautologies. ;Commutativity of conjunction:(P \land Q) \leftrightarrow (Q \land P) ;Commutativity of disjunction:(P \lor Q) \leftrightarrow (Q \lor P) ;Commutativity of implication (also called the law of permutation):(P \to (Q \to R)) \leftrightarrow (Q \to (P \to R)) ;Commutativity of equivalence (also called the complete commutative law of equivalence):(P \leftrightarrow Q) \leftrightarrow (Q \leftrightarrow P)


Set theory

In
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
and set theory, many algebraic structures are called commutative when certain operands satisfy the commutative property. In higher branches of mathematics, such as
analysis Analysis ( : analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (3 ...
and linear algebra the commutativity of well-known operations (such as
addition Addition (usually signified by the plus symbol ) is one of the four basic operations of arithmetic, the other three being subtraction, multiplication and division. The addition of two whole numbers results in the total amount or '' sum'' of ...
and multiplication on real and complex numbers) is often used (or implicitly assumed) in proofs.


Mathematical structures and commutativity

* A
commutative semigroup In mathematics, a semigroup is a nonempty set together with an associative binary operation. A special class of semigroups is a class of semigroups satisfying additional properties or conditions. Thus the class of commutative semigroups consists ...
is a set endowed with a total,
associative In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement ...
and commutative operation. * If the operation additionally has an
identity element In mathematics, an identity element, or neutral element, of a binary operation operating on a set is an element of the set that leaves unchanged every element of the set when the operation is applied. This concept is used in algebraic structures ...
, we have a
commutative monoid In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoids a ...
* An
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is comm ...
, or ''commutative group'' is a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
whose group operation is commutative. * A
commutative ring In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not ...
is a
ring Ring may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell :(hence) to initiate a telephone connection Arts, entertainment and media Film and ...
whose multiplication is commutative. (Addition in a ring is always commutative.) * In a
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
both addition and multiplication are commutative.


Related properties


Associativity

The associative property is closely related to the commutative property. The associative property of an expression containing two or more occurrences of the same operator states that the order operations are performed in does not affect the final result, as long as the order of terms does not change. In contrast, the commutative property states that the order of the terms does not affect the final result. Most commutative operations encountered in practice are also associative. However, commutativity does not imply associativity. A counterexample is the function :f(x, y) = \frac, which is clearly commutative (interchanging ''x'' and ''y'' does not affect the result), but it is not associative (since, for example, f(-4, f(0, +4)) = -1 but f(f(-4, 0), +4) = +1). More such examples may be found in commutative non-associative magmas. Furthermore, associativity does not imply commutativity either - for example multiplication of quaternions or of matrices is always associative but not always commutative.


Distributive


Symmetry

Some forms of symmetry can be directly linked to commutativity. When a commutative operation is written as a
binary function In mathematics, a binary function (also called bivariate function, or function of two variables) is a function that takes two inputs. Precisely stated, a function f is binary if there exists sets X, Y, Z such that :\,f \colon X \times Y \righ ...
z=f(x,y), then this function is called a
symmetric function In mathematics, a function of n variables is symmetric if its value is the same no matter the order of its arguments. For example, a function f\left(x_1,x_2\right) of two arguments is a symmetric function if and only if f\left(x_1,x_2\right) = f ...
, and its graph in three-dimensional space is symmetric across the plane y=x. For example, if the function is defined as f(x,y)=x+y then f is a symmetric function. For relations, a
symmetric relation A symmetric relation is a type of binary relation. An example is the relation "is equal to", because if ''a'' = ''b'' is true then ''b'' = ''a'' is also true. Formally, a binary relation ''R'' over a set ''X'' is symmetric if: :\forall a, b \in X ...
is analogous to a commutative operation, in that if a relation ''R'' is symmetric, then a R b \Leftrightarrow b R a.


Non-commuting operators in quantum mechanics

In quantum mechanics as formulated by Schrödinger, physical variables are represented by linear operators such as x (meaning multiply by x), and \frac. These two operators do not commute as may be seen by considering the effect of their
compositions Composition or Compositions may refer to: Arts and literature *Composition (dance), practice and teaching of choreography *Composition (language), in literature and rhetoric, producing a work in spoken tradition and written discourse, to include v ...
x \frac and \frac x (also called products of operators) on a one-dimensional
wave function A wave function in quantum physics is a mathematical description of the quantum state of an isolated quantum system. The wave function is a complex-valued probability amplitude, and the probabilities for the possible results of measurements m ...
\psi(x): : x\cdot \psi = x\cdot \psi' \ \neq \ \psi + x\cdot \psi' = \left( x\cdot \psi \right) According to the uncertainty principle of
Heisenberg Werner Karl Heisenberg () (5 December 1901 – 1 February 1976) was a German theoretical physicist and one of the main pioneers of the theory of quantum mechanics. He published his work in 1925 in a breakthrough paper. In the subsequent serie ...
, if the two operators representing a pair of variables do not commute, then that pair of variables are mutually
complementary A complement is something that completes something else. Complement may refer specifically to: The arts * Complement (music), an interval that, when added to another, spans an octave ** Aggregate complementation, the separation of pitch-class ...
, which means they cannot be simultaneously measured or known precisely. For example, the position and the linear momentum in the x-direction of a particle are represented by the operators x and -i \hbar \frac, respectively (where \hbar is the reduced Planck constant). This is the same example except for the constant -i \hbar, so again the operators do not commute and the physical meaning is that the position and linear momentum in a given direction are complementary.


See also

*
Anticommutative property In mathematics, anticommutativity is a specific property of some non- commutative mathematical operations. Swapping the position of two arguments of an antisymmetric operation yields a result which is the ''inverse'' of the result with unswappe ...
*
Centralizer and normalizer In mathematics, especially group theory, the centralizer (also called commutant) of a subset ''S'' in a group ''G'' is the set of elements \mathrm_G(S) of ''G'' such that each member g \in \mathrm_G(S) commutes with each element of ''S'', ...
(also called a commutant) *
Commutative diagram 350px, The commutative diagram used in the proof of the five lemma. In mathematics, and especially in category theory, a commutative diagram is a diagram such that all directed paths in the diagram with the same start and endpoints lead to the ...
*
Commutative (neurophysiology) In neurophysiology, commutation is the process by which the brain's neural circuits exhibit non-commutativity. Physiologist Douglas B. Tweed and coworkers have considered whether certain neural circuits in the brain exhibit noncommutativity and st ...
*
Commutator In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory. Group theory The commutator of two elements, ...
* Parallelogram law *
Particle statistics Particle statistics is a particular description of multiple particles in statistical mechanics. A key prerequisite concept is that of a statistical ensemble (an idealization comprising the state space of possible states of a system, each labeled w ...
(for commutativity in physics) * Proof that Peano's axioms imply the commutativity of the addition of natural numbers *
Quasi-commutative property In mathematics, the quasi-commutative property is an extension or generalization of the general commutative property. This property is used in specific applications with various definitions. Applied to matrices Two matrices p and q are said to ha ...
* Trace monoid *
Commuting probability In mathematics and more precisely in group theory, the commuting probability (also called degree of commutativity or commutativity degree) of a finite group is the probability that two randomly chosen elements commute. It can be used to measure ho ...


Notes


References


Books

* *:''Abstract algebra theory. Covers commutativity in that context. Uses property throughout book.'' * * *:''Linear algebra theory. Explains commutativity in chapter 1, uses it throughout.'' * *:''Abstract algebra theory. Uses commutativity property throughout book.'' *


Articles

* *:''Article describing the mathematical ability of ancient civilizations.'' * *:''Translation and interpretation of the Rhind Mathematical Papyrus.''


Online resources

* *Krowne, Aaron, , Accessed 8 August 2007. *:''Definition of commutativity and examples of commutative operations'' *, Accessed 8 August 2007. *:''Explanation of the term commute'' * , Accessed 8 August 2007 *:''Examples proving some noncommutative operations'' * *:''Article giving the history of the real numbers'' * *:''Page covering the earliest uses of mathematical terms'' * *:''Biography of Francois Servois, who first used the term'' {{Good article Properties of binary operations Elementary algebra Rules of inference Symmetry Concepts in physics Functional analysis