colax map of monads
   HOME

TheInfoList



OR:

In category theory, a discipline within mathematics, the notion of lax functor between bicategories generalizes that of
functor In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, an ...
s between categories. Let ''C,D'' be bicategories. We denote composition i
diagrammatic order
A ''lax functor P from C to D'', denoted P: C\to D, consists of the following data: * for each object ''x'' in ''C'', an object P_x\in D; * for each pair of objects ''x,y ∈ C'' a functor on morphism-categories, P_: C(x,y)\to D(P_x,P_y); * for each object ''x∈C'', a 2-morphism P_:\text_\to P_(\text_x) in ''D''; * for each triple of objects, ''x,y,z ∈C'', a 2-morphism P_(f,g): P_(f);P_(g)\to P_(f;g) in ''D'' that is natural in ''f: x→y'' and ''g: y→z''. These must satisfy three commutative diagrams, which record the interaction between left unity, right unity, and associativity between ''C'' and ''D''. See http://ncatlab.org/nlab/show/pseudofunctor. A lax functor in which all of the structure 2-morphisms, i.e. the P_ and P_{x,y,z} above, are invertible is called a
pseudofunctor In mathematics, a pseudofunctor ''F'' is a mapping between 2-categories, or from a category to a 2-category, that is just like a functor except that F(f \circ g) = F(f) \circ F(g) and F(1) = 1 do not hold as exact equalities but only up to ''coh ...
. Category theory