
A chromosome is a long
DNA molecule with part or all of the
genetic material of an organism. In most chromosomes the very long thin DNA fibers are coated with packaging proteins; in
eukaryotic cells the most important of these proteins are the
histone
In biology
Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that pr ...
s. These proteins, aided by
chaperone proteins, bind to and
condense the DNA molecule to maintain its integrity.
These chromosomes display a complex three-dimensional structure, which plays a significant role in
transcriptional regulation.
Chromosomes are normally visible under a
light microscope only during the
metaphase
Metaphase ( and ) is a stage of mitosis in the eukaryotic cell cycle
The cell cycle, or cell-division cycle, is the series of events that take place in a cell that cause it to divide into two daughter cells. These events include the d ...
of
cell division
Cell division is the process by which a parent cell divides into two daughter cells. Cell division usually occurs as part of a larger cell cycle
The cell cycle, or cell-division cycle, is the series of events that take place in a cell ...
(where all chromosomes are aligned in the center of the cell in their condensed form). Before this happens, each chromosome is duplicated (
S phase), and both copies are joined by a
centromere, resulting either in an X-shaped structure (pictured above), if the
centromere is located equatorially, or a two-arm structure, if the centromere is located distally. The joined copies are now called
sister chromatids. During metaphase the X-shaped structure is called a metaphase chromosome, which is highly condensed and thus easiest to distinguish and study.
In animal cells, chromosomes reach their highest compaction level in
anaphase during
chromosome segregation
Chromosome segregation is the process in eukaryotes by which two sister chromatids formed as a consequence of DNA replication
In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one ...
.
Chromosomal
recombination during
meiosis and subsequent
sexual reproduction play a significant role in
genetic diversity
Genetic diversity is the total number of genetic characteristics in the genetic makeup of a species, it ranges widely from the number of species to differences within species
In biology
Biology is the scientific study of life. It ...
. If these structures are manipulated incorrectly, through processes known as chromosomal instability and translocation, the cell may undergo
mitotic catastrophe. Usually, this will make the cell initiate
apoptosis
Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes ( morphology) and death. These changes in ...
leading to its own death, but sometimes mutations in the cell hamper this process and thus cause progression of
cancer
Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal ...
.
Some use the term chromosome in a wider sense, to refer to the individualized portions of
chromatin in cells, either visible or not under light microscopy. Others use the concept in a narrower sense, to refer to the individualized portions of chromatin during cell division, visible under light microscopy due to high condensation.
Etymology
The word ''chromosome'' () comes from the
Greek (''chroma'', "colour") and (''soma'', "body"), describing their strong staining by particular
dyes. The term was coined by the German anatomist
Heinrich Wilhelm Waldeyer, referring to the term
chromatin, which was introduced by
Walther Flemming, the discoverer of
cell division
Cell division is the process by which a parent cell divides into two daughter cells. Cell division usually occurs as part of a larger cell cycle
The cell cycle, or cell-division cycle, is the series of events that take place in a cell ...
.
Some of the early karyological terms have become outdated. For example, Chromatin (Flemming 1880) and Chromosom (Waldeyer 1888), both ascribe color to a non-colored state.
History of discovery
The German scientists
Schleiden,
Virchow and
Bütschli were among the first scientists who recognized the structures now familiar as chromosomes.
In a series of experiments beginning in the mid-1880s,
Theodor Boveri gave definitive contributions to elucidating that chromosomes are the
vectors of heredity, with two notions that became known as ‘chromosome continuity’ and ‘chromosome individuality’.
Wilhelm Roux suggested that each chromosome carries a different
genetic configuration, and Boveri was able to test and confirm this hypothesis. Aided by the rediscovery at the start of the 1900s of
Gregor Mendel's earlier work, Boveri was able to point out the connection between the rules of inheritance and the behaviour of the chromosomes. Boveri influenced two generations of American cytologists:
Edmund Beecher Wilson,
Nettie Stevens,
Walter Sutton and
Theophilus Painter were all influenced by Boveri (Wilson, Stevens, and Painter actually worked with him).
In his famous textbook ''The Cell in Development and Heredity'', Wilson linked together the independent work of Boveri and Sutton (both around 1902) by naming the chromosome theory of inheritance the
Boveri–Sutton chromosome theory (the names are sometimes reversed).
Ernst Mayr remarks that the theory was hotly contested by some famous geneticists:
William Bateson
William Bateson (8 August 1861 – 8 February 1926) was an English biologist
A biologist is a scientist who conducts research in biology
Biology is the scientific study of life. It is a natural science with a broad scope but has ...
,
Wilhelm Johannsen,
Richard Goldschmidt and
T.H. Morgan, all of a rather dogmatic turn of mind. Eventually, complete proof came from chromosome maps in Morgan's own lab.
The number of human chromosomes was published in 1923 by
Theophilus Painter. By inspection through the microscope, he counted 24 pairs, which would mean 48 chromosomes. His error was copied by others and it was not until 1956 that the true number, 46, was determined by Indonesia-born cytogeneticist
Joe Hin Tjio.
Prokaryotes
The
prokaryotes – bacteria and
archaea – typically have a single
circular chromosome, but many variations exist. The chromosomes of most bacteria, which some authors prefer to call
genophores, can range in size from only 130,000
base pair
A base pair (bp) is a fundamental unit of double-stranded nucleic acids consisting of two nucleobases bound to each other by hydrogen bonds. They form the building blocks of the DNA double helix and contribute to the folded structure of both ...
s in the
endosymbiotic bacteria ''
Candidatus Hodgkinia cicadicola''
and ''
Candidatus Tremblaya princeps'', to more than 14,000,000 base pairs in the soil-dwelling bacterium ''
Sorangium cellulosum''.
Spirochaetes of the
genus
Genus ( plural genera ) is a taxonomic rank used in the biological classification of living and fossil organisms as well as virus
A virus is a submicroscopic infectious agent that replicates only inside the living cells of an o ...
''
Borrelia'' are a notable exception to this arrangement, with bacteria such as ''
Borrelia burgdorferi'', the cause of
Lyme disease, containing a single ''linear'' chromosome.
Structure in sequences
Prokaryotic chromosomes have less sequence-based structure than eukaryotes. Bacteria typically have a one-point (the
origin of replication) from which replication starts, whereas some archaea contain multiple replication origins. The genes in prokaryotes are often organized in
operons, and do not usually contain
intron
An intron is any nucleotide sequence within a gene
In biology, the word gene (from , ; "... Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can ha ...
s, unlike eukaryotes.
DNA packaging
Prokaryotes do not possess nuclei. Instead, their DNA is organized into a structure called the
nucleoid.
The nucleoid is a distinct structure and occupies a defined region of the bacterial cell. This structure is, however, dynamic and is maintained and remodeled by the actions of a range of histone-like proteins, which associate with the bacterial chromosome. In
archaea, the DNA in chromosomes is even more organized, with the DNA packaged within structures similar to eukaryotic nucleosomes.
Certain bacteria also contain
plasmid
A plasmid is a small, extrachromosomal DNA molecule within a cell that is physically separated from chromosomal DNA and can replicate independently. They are most commonly found as small circular, double-stranded DNA molecules in bacteria
...
s or other
extrachromosomal DNA. These are circular structures in the
cytoplasm
In cell biology, the cytoplasm is all of the material within a eukaryotic cell, enclosed by the cell membrane, except for the cell nucleus. The material inside the nucleus and contained within the nuclear membrane is termed the nucleoplas ...
that contain cellular DNA and play a role in
horizontal gene transfer.
In prokaryotes (see
nucleoids) and viruses,
the DNA is often densely packed and organized; in the case of
archaea, by homology to eukaryotic histones, and in the case of bacteria, by
histone-like proteins.
Bacterial chromosomes tend to be tethered to the
plasma membrane
The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment ( ...
of the bacteria. In molecular biology application, this allows for its isolation from plasmid DNA by centrifugation of lysed bacteria and pelleting of the membranes (and the attached DNA).
Prokaryotic chromosomes and plasmids are, like eukaryotic DNA, generally
supercoiled. The DNA must first be released into its relaxed state for access for
transcription, regulation, and
replication.
Eukaryotes

Each eukaryotic chromosome consists of a long linear DNA molecule associated with proteins, forming a compact complex of proteins and DNA called ''
chromatin.'' Chromatin contains the vast majority of the DNA of an organism, but a
small amount inherited maternally, can be found in the
mitochondria
A mitochondrion (; ) is an organelle found in the cells of most Eukaryote
Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group ...
. It is present in most
cells, with a few exceptions, for example,
red blood cell
Red blood cells (RBCs), also referred to as red cells, red blood corpuscles (in humans or other animals not having nucleus in red blood cells), haematids, erythroid cells or erythrocytes (from Greek ''erythros'' for "red" and ''kytos'' for "hol ...
s.
Histone
In biology
Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that pr ...
s are responsible for the first and most basic unit of chromosome organization, the
nucleosome.
Eukaryotes (
cells with nuclei such as those found in plants, fungi, and animals) possess multiple large linear chromosomes contained in the cell's nucleus. Each chromosome has one
centromere, with one or two arms projecting from the centromere, although, under most circumstances, these arms are not visible as such. In addition, most eukaryotes have a small circular
mitochondrial genome, and some eukaryotes may have additional small circular or linear
cytoplasm
In cell biology, the cytoplasm is all of the material within a eukaryotic cell, enclosed by the cell membrane, except for the cell nucleus. The material inside the nucleus and contained within the nuclear membrane is termed the nucleoplas ...
ic chromosomes.

In the nuclear chromosomes of
eukaryote
Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bac ...
s, the uncondensed DNA exists in a semi-ordered structure, where it is wrapped around
histone
In biology
Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that pr ...
s (structural
protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
s), forming a composite material called
chromatin.
Interphase chromatin
The packaging of DNA into nucleosomes causes a 10 nanometer fibre which may further condense up to 30 nm fibres
Most of the euchromatin in interphase nuclei appears to be in the form of 30-nm fibers.
Chromatin structure is the more decondensed state, i.e. the 10-nm conformation allows transcription.

During
interphase (the period of the
cell cycle
The cell cycle, or cell-division cycle, is the series of events that take place in a cell that cause it to divide into two daughter cells. These events include the duplication of its DNA (DNA replication
In molecular biology, DNA replicat ...
where the cell is not dividing), two types of
chromatin can be distinguished:
*
Euchromatin, which consists of DNA that is active, e.g., being expressed as protein.
*
Heterochromatin
Heterochromatin is a tightly packed form of DNA or '' condensed DNA'', which comes in multiple varieties. These varieties lie on a continue between the two extremes of constitutive heterochromatin and facultative heterochromatin. Both play a rol ...
, which consists of mostly inactive DNA. It seems to serve structural purposes during the chromosomal stages. Heterochromatin can be further distinguished into two types:
** ''Constitutive heterochromatin'', which is never expressed. It is located around the centromere and usually contains
repetitive sequences.
** ''Facultative heterochromatin'', which is sometimes expressed.
Metaphase chromatin and division

In the early stages of
mitosis
In cell biology, mitosis () is a part of the cell cycle
The cell cycle, or cell-division cycle, is the series of events that take place in a cell that cause it to divide into two daughter cells. These events include the duplication ...
or
meiosis (cell division), the chromatin double helix become more and more condensed. They cease to function as accessible genetic material (
transcription stops) and become a compact transportable form. The loops of 30-nm chromatin fibers are thought to fold upon themselves further to form the compact metaphase chromosomes of mitotic cells. The DNA is thus condensed about 10,000 fold.
The chromosome scaffold, which is made of proteins such as
condensin,
TOP2A and
KIF4, plays an important role in holding the chromatin into compact chromosomes. Loops of 30 nm structure further condense with scaffold into higher order structures.
This highly compact form makes the individual chromosomes visible, and they form the classic four-arm structure, a pair of sister
chromatids attached to each other at the
centromere. The shorter arms are called ''
p arms'' (from the French ''petit'', small) and the longer arms are called ''
q arms'' (''q'' follows ''p'' in the Latin alphabet; q-g "grande"; alternatively it is sometimes said q is short for ''queue'' meaning tail in French). This is the only natural context in which individual chromosomes are visible with an optical
microscope.
Mitotic metaphase chromosomes are best described by a linearly organized longitudinally compressed array of consecutive chromatin loops.
During mitosis,
microtubule
Microtubules are polymers of tubulin
Tubulin in molecular biology can refer either to the tubulin protein superfamily of globular proteins, or one of the member proteins of that superfamily. α- and β-tubulins polymerize into microtubules ...
s grow from centrosomes located at opposite ends of the cell and also attach to the centromere at specialized structures called
kinetochores, one of which is present on each sister
chromatid. A special DNA base sequence in the region of the kinetochores provides, along with special proteins, longer-lasting attachment in this region. The microtubules then pull the chromatids apart toward the centrosomes, so that each daughter cell inherits one set of chromatids. Once the cells have divided, the chromatids are uncoiled and DNA can again be transcribed. In spite of their appearance, chromosomes are structurally highly condensed, which enables these giant DNA structures to be contained within a cell nucleus.
Human chromosomes
Chromosomes in humans can be divided into two types:
autosomes (body chromosome(s)) and allosome (
sex chromosome(s)). Certain genetic traits are linked to a person's sex and are passed on through the sex chromosomes. The autosomes contain the rest of the genetic hereditary information. All act in the same way during cell division. Human cells have 23 pairs of chromosomes (22 pairs of autosomes and one pair of sex chromosomes), giving a total of 46 per cell. In addition to these, human cells have many hundreds of copies of the
mitochondrial genome.
Sequencing
In genetics and biochemistry, sequencing means to determine the primary structure (sometimes incorrectly called the primary sequence) of an unbranched biopolymer
Biopolymers are natural polymer
A polymer (; Greek '' poly-'', "many" + ...
of the
human genome
The human genome is a complete set of nucleic acid sequences for humans, encoded as DNA within the 23 chromosome pairs in cell nuclei and in a small DNA molecule found within individual mitochondria. These are usually treated separately as ...
has provided a great deal of information about each of the chromosomes. Below is a table compiling statistics for the chromosomes, based on the
Sanger Institute's human genome information in the
Vertebrate Genome Annotation (VEGA) database. Number of genes is an estimate, as it is in part based on
gene predictions. Total chromosome length is an estimate as well, based on the estimated size of unsequenced
heterochromatin
Heterochromatin is a tightly packed form of DNA or '' condensed DNA'', which comes in multiple varieties. These varieties lie on a continue between the two extremes of constitutive heterochromatin and facultative heterochromatin. Both play a rol ...
regions.
Based on the micrographic characteristics of size, position of the
centromere and sometimes the presence of a
chromosomal satellite, the human chromosomes are classified into the following groups:
Karyotype

In general, the
karyotype
A karyotype is the general appearance of the complete set of metaphase
Metaphase ( and ) is a stage of mitosis in the eukaryotic cell cycle
The cell cycle, or cell-division cycle, is the series of events that take place in a cell t ...
is the characteristic chromosome complement of a
eukaryote
Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bac ...
species
In biology
Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that ...
. The preparation and study of karyotypes is part of
cytogenetics.
Although the
replication and
transcription of
DNA is highly standardized in
eukaryotes, the same cannot be said for their karyotypes, which are often highly variable. There may be variation between species in chromosome number and in detailed organization.
In some cases, there is significant variation within species. Often there is:
:1. variation between the two sexes
:2. variation between the
germ-line and
soma (between
gametes and the rest of the body)
:3. variation between members of a population, due to
balanced genetic polymorphism
:4.
geographical variation between
races
:5.
mosaics or otherwise abnormal individuals.
Also, variation in karyotype may occur during development from the fertilized egg.
The technique of determining the karyotype is usually called ''karyotyping''. Cells can be locked part-way through division (in metaphase)
in vitro (in a reaction vial) with
colchicine
Colchicine is a medication used to treat gout and Behçet's disease. In gout, it is less preferred to NSAIDs or steroids. Other uses for colchicine include the management of pericarditis and familial Mediterranean fever. Colchicine is t ...
. These cells are then stained, photographed, and arranged into a ''karyogram'', with the set of chromosomes arranged, autosomes in order of length, and sex chromosomes (here X/Y) at the end.
Like many sexually reproducing species, humans have special
gonosomes (sex chromosomes, in contrast to
autosomes). These are XX in females and XY in males.
History and analysis techniques
Investigation into the human karyotype took many years to settle the most basic question: ''How many chromosomes does a normal
diploid human cell contain?'' In 1912,
Hans von Winiwarter reported 47 chromosomes in
spermatogonia and 48 in
oogonia, concluding an
XX/XO sex determination mechanism.
Painter in 1922 was not certain whether the diploid number of man is 46 or 48, at first favouring 46. He revised his opinion later from 46 to 48, and he correctly insisted on humans having an
XX/XY system.
New techniques were needed to definitively solve the problem:
# Using cells in culture
# Arresting
mitosis
In cell biology, mitosis () is a part of the cell cycle
The cell cycle, or cell-division cycle, is the series of events that take place in a cell that cause it to divide into two daughter cells. These events include the duplication ...
in
metaphase
Metaphase ( and ) is a stage of mitosis in the eukaryotic cell cycle
The cell cycle, or cell-division cycle, is the series of events that take place in a cell that cause it to divide into two daughter cells. These events include the d ...
by a solution of
colchicine
Colchicine is a medication used to treat gout and Behçet's disease. In gout, it is less preferred to NSAIDs or steroids. Other uses for colchicine include the management of pericarditis and familial Mediterranean fever. Colchicine is t ...
# Pretreating cells in a
hypotonic solution 0.075 M KCl, which swells them and spreads the chromosomes
# Squashing the preparation on the slide forcing the chromosomes into a single plane
# Cutting up a photomicrograph and arranging the result into an indisputable karyogram.
It took until 1954 before the human diploid number was confirmed as 46. Considering the techniques of Winiwarter and Painter, their results were quite remarkable.
Chimpanzee
The chimpanzee (''Pan troglodytes''), also known as simply the chimp, is a species of Hominidae, great ape native to the forest and savannah of tropical Africa. It has four confirmed subspecies and a fifth proposed subspecies. When its close r ...
s, the closest living relatives to modern humans, have 48 chromosomes as do the other
great apes: in humans two chromosomes fused to form
chromosome 2.
Aberrations

Chromosomal aberrations are disruptions in the normal chromosomal content of a cell and are a major cause of genetic conditions in humans, such as
Down syndrome
Down syndrome or Down's syndrome, also known as trisomy 21, is a genetic disorder caused by the presence of all or part of a third copy of chromosome 21. It is usually associated with physical growth delays, mild to moderate intellectual d ...
, although most aberrations have little to no effect. Some chromosome abnormalities do not cause disease in carriers, such as
translocations, or
chromosomal inversions, although they may lead to a higher chance of bearing a child with a chromosome disorder. Abnormal numbers of chromosomes or chromosome sets, called
aneuploidy, may be lethal or may give rise to genetic disorders.
Genetic counseling is offered for families that may carry a chromosome rearrangement.
The gain or loss of DNA from chromosomes can lead to a variety of
genetic disorders. Human examples include:
*
Cri du chat, which is caused by the
deletion of part of the short arm of chromosome 5. "Cri du chat" means "cry of the cat" in French; the condition was so-named because affected babies make high-pitched cries that sound like those of a cat. Affected individuals have wide-set eyes, a small head and jaw, moderate to severe mental health problems, and are very short.
*
Down syndrome
Down syndrome or Down's syndrome, also known as trisomy 21, is a genetic disorder caused by the presence of all or part of a third copy of chromosome 21. It is usually associated with physical growth delays, mild to moderate intellectual d ...
, the most common trisomy, usually caused by an extra copy of chromosome 21 (
trisomy 21). Characteristics include decreased muscle tone, stockier build, asymmetrical skull, slanting eyes and mild to moderate developmental disability.
*
Edwards syndrome, or trisomy-18, the second most common trisomy. Symptoms include motor retardation, developmental disability and numerous congenital anomalies causing serious health problems. Ninety percent of those affected die in infancy. They have characteristic clenched hands and overlapping fingers.
*
Isodicentric 15, also called idic(15), partial tetrasomy 15q, or inverted duplication 15 (inv dup 15).
*
Jacobsen syndrome, which is very rare. It is also called the terminal 11q deletion disorder. Those affected have normal intelligence or mild developmental disability, with poor expressive language skills. Most have a bleeding disorder called
Paris-Trousseau syndrome.
*
Klinefelter syndrome (XXY). Men with Klinefelter syndrome are usually sterile and tend to be taller and have longer arms and legs than their peers. Boys with the syndrome are often shy and quiet and have a higher incidence of
speech delay and
dyslexia. Without testosterone treatment, some may develop
gynecomastia during puberty.
*
Patau Syndrome, also called D-Syndrome or trisomy-13. Symptoms are somewhat similar to those of trisomy-18, without the characteristic folded hand.
*
Small supernumerary marker chromosome. This means there is an extra, abnormal chromosome. Features depend on the origin of the extra genetic material.
Cat-eye syndrome and
isodicentric chromosome 15 syndrome (or Idic15) are both caused by a supernumerary marker chromosome, as is
Pallister–Killian syndrome.
*
Triple-X syndrome (XXX). XXX girls tend to be tall and thin and have a higher incidence of dyslexia.
*
Turner syndrome (X instead of XX or XY). In Turner syndrome, female sexual characteristics are present but underdeveloped. Females with Turner syndrome often have a short stature, low hairline, abnormal eye features and bone development and a "caved-in" appearance to the chest.
*
Wolf–Hirschhorn syndrome, which is caused by partial deletion of the short arm of chromosome 4. It is characterized by growth retardation, delayed motor skills development, "Greek Helmet" facial features, and mild to profound mental health problems.
*
XYY syndrome. XYY boys are usually taller than their siblings. Like XXY boys and XXX girls, they are more likely to have learning difficulties.
Sperm aneuploidy
Exposure of males to certain lifestyle, environmental and/or occupational hazards may increase the risk of aneuploid spermatozoa.
In particular, risk of aneuploidy is increased by tobacco smoking,
and occupational exposure to benzene,
insecticides,
and perfluorinated compounds.
Increased aneuploidy is often associated with increased DNA damage in spermatozoa.
Number in various organisms
In eukaryotes
The number of chromosomes in eukaryotes is highly variable (see table). In fact, chromosomes can fuse or break and thus evolve into novel karyotypes. Chromosomes can also be fused artificially. For example, the 16 chromosomes of
yeast
Yeasts are eukaryotic, single-celled microorganisms classified as members of the fungus kingdom. The first yeast originated hundreds of millions of years ago, and at least 1,500 species are currently recognized. They are estimated to cons ...
have been fused into one giant chromosome and the cells were still viable with only somewhat reduced growth rates.
The tables below give the total number of chromosomes (including sex chromosomes) in a cell nucleus. For example, most
eukaryotes are
diploid, like
humans who have 22 different types of
autosomes, each present as two homologous pairs, and two
sex chromosomes. This gives 46 chromosomes in total. Other organisms have more than two copies of their chromosome types, such as
bread wheat, which is ''hexaploid'' and has six copies of seven different chromosome types – 42 chromosomes in total.
Normal members of a particular eukaryotic
species
In biology
Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that ...
all have the same number of nuclear chromosomes (see the table). Other eukaryotic chromosomes, i.e., mitochondrial and plasmid-like small chromosomes, are much more variable in number, and there may be thousands of copies per cell.
Asexually reproducing species have one set of chromosomes that are the same in all body cells. However, asexual species can be either haploid or diploid.
Sexually reproducing species have
somatic cells (body cells), which are
diploid nhaving two sets of chromosomes (23 pairs in humans), one set from the mother and one from the father.
Gametes, reproductive cells, are
haploid They have one set of chromosomes. Gametes are produced by
meiosis of a diploid
germ line cell. During meiosis, the matching chromosomes of father and mother can exchange small parts of themselves (
crossover), and thus create new chromosomes that are not inherited solely from either parent. When a male and a female gamete merge (
fertilization), a new diploid organism is formed.
Some animal and plant species are
polyploid n They have more than two sets of
homologous chromosomes. Plants important in agriculture such as tobacco or wheat are often polyploid, compared to their ancestral species. Wheat has a haploid number of seven chromosomes, still seen in some
cultivars as well as the wild progenitors. The more-common pasta and bread wheat types are polyploid, having 28 (tetraploid) and 42 (hexaploid) chromosomes, compared to the 14 (diploid) chromosomes in the wild wheat.
In prokaryotes
Prokaryote species
In biology
Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that ...
generally have one copy of each major chromosome, but most cells can easily survive with multiple copies. For example, ''
Buchnera'', a
symbiont of
aphids has multiple copies of its chromosome, ranging from 10–400 copies per cell. However, in some large bacteria, such as ''
Epulopiscium fishelsoni'' up to 100,000 copies of the chromosome can be present.
Plasmids and plasmid-like small chromosomes are, as in eukaryotes, highly variable in copy number. The number of plasmids in the cell is almost entirely determined by the rate of division of the plasmid – fast division causes high copy number.
See also
*
Aneuploidy
*
Chromomere
*
Chromosome segregation
Chromosome segregation is the process in eukaryotes by which two sister chromatids formed as a consequence of DNA replication
In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one ...
*
Cohesin
*
Condensin
*
DNA
*
Genetic deletion
*
Epigenetics
In biology, epigenetics is the study of stable phenotypic changes (known as ''marks'') that do not involve alterations in the DNA sequence. The Greek prefix '' epi-'' ( "over, outside of, around") in ''epigenetics'' implies features that are ...
* For information about chromosomes in
genetic algorithms, see
chromosome (genetic algorithm)
*
Genetic genealogy
**
Genealogical DNA test
*
Lampbrush chromosome
*
List of number of chromosomes of various organisms
*
Locus (explains gene location nomenclature)
*
Maternal influence on sex determination
*
Microchromosome
*
Minichromosome
*
Non-disjunction
*
Secondary chromosome
*
Sex-determination system
**
XY sex-determination system
***
X-chromosome
****
X-inactivation
***
Y-chromosome
****
Y-chromosomal Aaron
****
Y-chromosomal Adam
**
ZO sex-determination system
**
ZW sex-determination system
**
XO sex-determination system
**
Temperature-dependent sex determination
**
Haplodiploid sex-determination system
*
Polytene chromosome
*
Protamine
*
Neochromosome
*
Parasitic chromosome
Notes and references
External links
An Introduction to DNA and Chromosomesfrom
HOPES: Huntington's Outreach Project for Education at Stanford
Chromosome Abnormalities at AtlasGeneticsOncologyOn-line exhibition on chromosomes and genome (SIB)What Can Our Chromosomes Tell Us? from the University of Utah's Genetic Science Learning Center
Try making a karyotype yourself from the University of Utah's Genetic Science Learning Center
Chromosome News from Genome News Network European network for Rare Chromosome Disorders on the Internet
Ensembl.org Ensembl project, presenting chromosomes, their
gene
In biology, the word gene (from , ; "... Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a ...
s and
syntenic loci graphically via the web
Genographic Project
Home reference on Chromosomesfrom the U.S. National Library of Medicine
Visualisation of human chromosomesand comparison to other species
Unique – The Rare Chromosome Disorder Support GroupSupport for people with rare chromosome disorders
{{Authority control
Nuclear substructures
Cytogenetics