HOME

TheInfoList



OR:

In
optics Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultrav ...
, chromatic aberration (CA), also called chromatic distortion and spherochromatism, is a failure of a lens to focus all
color Color (American English) or colour (British English) is the visual perceptual property deriving from the spectrum of light interacting with the photoreceptor cells of the eyes. Color categories and physical specifications of color are associ ...
s to the same point. It is caused by
dispersion Dispersion may refer to: Economics and finance *Dispersion (finance), a measure for the statistical distribution of portfolio returns *Price dispersion, a variation in prices across sellers of the same item *Wage dispersion, the amount of variatio ...
: the
refractive index In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, ...
of the lens elements varies with the wavelength of
light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 t ...
. The refractive index of most transparent materials decreases with increasing wavelength. Since the focal length of a lens depends on the refractive index, this variation in refractive index affects focusing. Chromatic aberration manifests itself as "fringes" of color along boundaries that separate dark and bright parts of the image.


Types

There are two types of chromatic aberration: ''axial'' (''longitudinal''), and ''transverse'' (''lateral''). Axial aberration occurs when different wavelengths of light are focused at different distances from the lens (focus ''shift''). Longitudinal aberration is typical at long focal lengths. Transverse aberration occurs when different wavelengths are focused at different positions in the focal plane, because the magnification and/or distortion of the lens also varies with wavelength. Transverse aberration is typical at short focal lengths. The ambiguous acronym LCA is sometimes used for either ''longitudinal'' or ''lateral'' chromatic aberration. The two types of chromatic aberration have different characteristics, and may occur together. Axial CA occurs throughout the image and is specified by optical engineers, optometrists, and vision scientists in diopters. It can be reduced by stopping down, which increases depth of field so that though the different wavelengths focus at different distances, they are still in acceptable focus. Transverse CA does not occur in the center of the image and increases towards the edge. It is not affected by stopping down. In digital sensors, axial CA results in the red and blue planes being defocused (assuming that the green plane is in focus), which is relatively difficult to remedy in post-processing, while transverse CA results in the red, green, and blue planes being at different magnifications (magnification changing along radii, as in geometric distortion), and can be corrected by radially scaling the planes appropriately so they line up.


Minimization

In the earliest uses of lenses, chromatic aberration was reduced by increasing the focal length of the lens where possible. For example, this could result in extremely long
telescopes A telescope is a device used to observe distant objects by their emission, absorption, or reflection of electromagnetic radiation. Originally meaning only an optical instrument using lenses, curved mirrors, or a combination of both to observ ...
such as the very long aerial telescopes of the 17th century.
Isaac Newton Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, Theology, theologian, and author (described in his time as a "natural philosophy, natural philosopher"), widely ...
's theories about
white light White is the lightest color and is achromatic (having no hue). It is the color of objects such as snow, chalk, and milk, and is the opposite of black. White objects fully reflect and scatter all the visible wavelengths of light. White on ...
being composed of a spectrum of colors led him to the conclusion that uneven refraction of light caused chromatic aberration (leading him to build the first reflecting telescope, his Newtonian telescope, in 1668.) Modern telescopes, as well as other catoptric and catadioptric systems, continue to use mirrors, which have no chromatic aberration. There exists a point called the '' circle of least confusion'', where chromatic aberration can be minimized. It can be further minimized by using an achromatic lens or ''achromat'', in which materials with differing dispersion are assembled together to form a compound lens. The most common type is an achromatic doublet, with elements made of crown and
flint glass Flint glass is optical glass that has relatively high refractive index and low Abbe number (high dispersion). Flint glasses are arbitrarily defined as having an Abbe number of 50 to 55 or less. The currently known flint glasses have refractiv ...
. This reduces the amount of chromatic aberration over a certain range of wavelengths, though it does not produce perfect correction. By combining more than two lenses of different composition, the degree of correction can be further increased, as seen in an apochromatic lens or ''apochromat''. Note that "achromat" and "apochromat" refer to the ''type'' of correction (2 or 3 wavelengths correctly focused), not the ''degree'' (how defocused the other wavelengths are), and an achromat made with sufficiently low dispersion glass can yield significantly better correction than an achromat made with more conventional glass. Similarly, the benefit of apochromats is not simply that they focus three wavelengths sharply, but that their error on other wavelengths is also quite small. Many types of
glass Glass is a non- crystalline, often transparent, amorphous solid that has widespread practical, technological, and decorative use in, for example, window panes, tableware, and optics. Glass is most often formed by rapid cooling (quenchin ...
have been developed to reduce chromatic aberration. These are
low dispersion glass Low-dispersion glass (LD glass) is a type of glass with a reduction in chromatic aberration (less rainbow effect). Crown glass is an example of a relatively inexpensive low-dispersion glass. ''Special low dispersion glass'' (SLD glass) and ''extr ...
, most notably, glasses containing fluorite. These hybridized glasses have a very low level of optical dispersion; only two compiled lenses made of these substances can yield a high level of correction. The use of achromats was an important step in the development of optical microscopes and
telescopes A telescope is a device used to observe distant objects by their emission, absorption, or reflection of electromagnetic radiation. Originally meaning only an optical instrument using lenses, curved mirrors, or a combination of both to observ ...
. An alternative to achromatic doublets is the use of diffractive optical elements. Diffractive optical elements are able to generate arbitrary complex wave fronts from a sample of optical material which is essentially flat. Diffractive optical elements have negative dispersion characteristics, complementary to the positive Abbe numbers of optical glasses and plastics. Specifically, in the visible part of the spectrum diffractives have a negative Abbe number of −3.5. Diffractive optical elements can be fabricated using
diamond turning Diamond turning is turning using a cutting tool with a diamond tip. It is a process of mechanical machining of precision elements using lathes or derivative machine tools (e.g., turn-mills, rotary transfers) equipped with natural or synthetic di ...
techniques. Telephoto lenses using diffractive elements to minimize chromatic aberration are commercially available from Canon and Nikon for interchangeable-lens cameras; these include 800mm f/6.3, 500mm f/5.6, and 300mm f/4 models by Nikon (branded as "phase fresnel" or PF), and 800mm f/11, 600mm f/11, and 400mm f/4 models by Canon (branded as "diffractive optics" or DO). They produce sharp images with reduced chromatic aberration at a lower weight and size than traditional optics of similar specifications and are generally well-regarded by wildlife photographers.


Mathematics of chromatic aberration minimization

For a doublet consisting of two thin lenses in contact, the Abbe number of the lens materials is used to calculate the correct focal length of the lenses to ensure correction of chromatic aberration. If the focal lengths of the two lenses for light at the yellow Fraunhofer D-line (589.2 nm) are ''f''1 and ''f''2, then best correction occurs for the condition: :f_1 \cdot V_1 + f_2 \cdot V_2 = 0 where ''V''1 and ''V''2 are the Abbe numbers of the materials of the first and second lenses, respectively. Since Abbe numbers are positive, one of the focal lengths must be negative, i.e., a diverging lens, for the condition to be met. The overall focal length of the doublet ''f'' is given by the standard formula for thin lenses in contact: :\frac = \frac + \frac and the above condition ensures this will be the focal length of the doublet for light at the blue and red Fraunhofer F and C lines (486.1 nm and 656.3 nm respectively). The focal length for light at other visible wavelengths will be similar but not exactly equal to this. Chromatic aberration is used during a duochrome eye test to ensure that a correct lens power has been selected. The patient is confronted with red and green images and asked which is sharper. If the prescription is right, then the cornea, lens and prescribed lens will focus the red and green wavelengths just in front, and behind the retina, appearing of equal sharpness. If the lens is too powerful or weak, then one will focus on the retina, and the other will be much more blurred in comparison.


Image processing to reduce the appearance of lateral chromatic aberration

In some circumstances, it is possible to correct some of the effects of chromatic aberration in digital post-processing. However, in real-world circumstances, chromatic aberration results in permanent loss of some image detail. Detailed knowledge of the optical system used to produce the image can allow for some useful correction. In an ideal situation, post-processing to remove or correct lateral chromatic aberration would involve scaling the fringed color channels, or subtracting some of a scaled versions of the fringed channels, so that all channels spatially overlap each other correctly in the final image. As chromatic aberration is complex (due to its relationship to focal length, etc.) some camera manufacturers employ lens-specific chromatic aberration appearance minimization techniques. Almost every major camera manufacturer enables some form of chromatic aberration correction, both in-camera and via their proprietary software. Third party software tools such as PTLens are also capable of performing complex chromatic aberration appearance minimization with their large database of cameras and lens. In reality, even a theoretically perfect post-processing based chromatic aberration reduction-removal-correction systems do not increase image detail as a lens that is optically well corrected for chromatic aberration would for the following reasons: * Rescaling is only applicable to lateral chromatic aberration but there is also longitudinal chromatic aberration * Rescaling individual color channels result in a loss of resolution from the original image * Most camera sensors only capture a few and discrete (e.g., RGB) color channels but chromatic aberration is not discrete and occurs across the light spectrum * The dyes used in the digital camera sensors for capturing color are not very efficient so cross-channel color contamination is unavoidable and causes, for example, the chromatic aberration in the red channel to also be blended into the green channel along with any green chromatic aberration. The above are closely related to the specific scene that is captured so no amount of programming and knowledge of the capturing equipment (e.g., camera and lens data) can overcome these limitations.


Photography

The term " purple fringing" is commonly used in
photography Photography is the art, application, and practice of creating durable images by recording light, either electronically by means of an image sensor, or chemically by means of a light-sensitive material such as photographic film. It is emplo ...
, although not all purple fringing can be attributed to chromatic aberration. Similar colored fringing around highlights may also be caused by lens flare. Colored fringing around highlights or dark regions may be due to the receptors for different colors having differing dynamic range or sensitivity – therefore preserving detail in one or two color channels, while "blowing out" or failing to register, in the other channel or channels. On digital cameras, the particular demosaicing algorithm is likely to affect the apparent degree of this problem. Another cause of this fringing is chromatic aberration in the very small microlenses used to collect more light for each CCD pixel; since these lenses are tuned to correctly focus green light, the incorrect focusing of red and blue results in purple fringing around highlights. This is a uniform problem across the frame, and is more of a problem in CCDs with a very small
pixel pitch Dot pitch (sometimes called line pitch, stripe pitch, or phosphor pitch) is a specification for a computer display, computer printer, image scanner, or other pixel-based devices that describe the distance, for example, between dots ( sub-pixels) ...
such as those used in compact cameras. Some cameras, such as the Panasonic Lumix series and newer Nikon and Sony DSLRs, feature a processing step specifically designed to remove it. On photographs taken using a digital camera, very small highlights may frequently appear to have chromatic aberration where in fact the effect is because the highlight image is too small to stimulate all three color pixels, and so is recorded with an incorrect color. This may not occur with all types of digital camera sensor. Again, the de-mosaicing algorithm may affect the apparent degree of the problem. Nearsighted color fringing -9.5 diopter - Canon PowerShot A640 thru glasses - closeup detail.jpg, Color shifting through corner of eyeglasses. Purple fringing.jpg, Severe purple fringing can be seen at the edges of the horse's forelock, mane, and ear. File:Filigranski nakit 02 edit.JPG, This photo taken with the lens aperture wide open resulting in a narrow depth-of-field and strong axial CA. The pendant has purple fringing in the near out-of-focus area and green fringing in the distance. Taken with a Nikon D7000 camera and an AF-S Nikkor 50mm f/1.8G lens. File:Chris-chromatic-aberration.png, Severe chromatic aberration


Black-and-white photography

Chromatic aberration also affects black-and-white photography. Although there are no colors in the photograph, chromatic aberration will blur the image. It can be reduced by using a narrow-band color filter, or by converting a single color channel to black and white. This will, however, require longer exposure (and change the resulting image). (This is only true with panchromatic black-and-white film, since orthochromatic film is already sensitive to only a limited spectrum.)


Electron microscopy

Chromatic aberration also affects electron microscopy, although instead of different colors having different focal points, different electron energies may have different focal points.


See also

* Achromatic telescope * Cooke triplet * Superachromat * Chromostereopsis – Stereo visual effects due to chromatic aberration *'' Theory of Colours''


References


External links


Methods to correct chromatic aberrations in lens designPanoTools Wiki article about chromatic aberration
{{Photography Geometrical optics Image defects