HOME

TheInfoList



OR:

A chemical reaction is a process that leads to the
chemical transformation A chemical substance is a form of matter having constant chemical composition and characteristic properties. Some references add that chemical substance cannot be separated into its constituent elements by physical separation methods, i.e., with ...
of one set of
chemical substance A chemical substance is a form of matter having constant chemical composition and characteristic properties. Some references add that chemical substance cannot be separated into its constituent elements by physical separation methods, i.e., wit ...
s to another. Classically, chemical reactions encompass changes that only involve the positions of
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
s in the forming and breaking of chemical bonds between
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, a ...
s, with no change to the nuclei (no change to the elements present), and can often be described by a chemical equation.
Nuclear chemistry Nuclear chemistry is the sub-field of chemistry dealing with radioactivity, nuclear processes, and transformations in the nuclei of atoms, such as nuclear transmutation and nuclear properties. It is the chemistry of radioactive elements such as ...
is a sub-discipline of
chemistry Chemistry is the scientific study of the properties and behavior of matter. It is a natural science that covers the elements that make up matter to the compounds made of atoms, molecules and ions: their composition, structure, proper ...
that involves the chemical reactions of unstable and radioactive elements where both electronic and nuclear changes can occur. The substance (or substances) initially involved in a chemical reaction are called reactants or reagents. Chemical reactions are usually characterized by a chemical change, and they yield one or more products, which usually have properties different from the reactants. Reactions often consist of a sequence of individual sub-steps, the so-called elementary reactions, and the information on the precise course of action is part of the reaction mechanism. Chemical reactions are described with chemical equations, which symbolically present the starting materials, end products, and sometimes intermediate products and reaction conditions. Chemical reactions happen at a characteristic reaction rate at a given temperature and chemical concentration. Typically, reaction rates increase with increasing temperature because there is more thermal energy available to reach the activation energy necessary for breaking bonds between atoms. Reactions may proceed in the forward or reverse direction until they go to completion or reach equilibrium. Reactions that proceed in the forward direction to approach equilibrium are often described as
spontaneous Spontaneous may refer to: * Spontaneous abortion * Spontaneous bacterial peritonitis * Spontaneous combustion * Spontaneous declaration * Spontaneous emission * Spontaneous fission * Spontaneous generation * Spontaneous human combustion * Spontan ...
and reduce the free energy if they occur at constant temperature and pressure. Non-spontaneous reactions require an input of energy to go forward (examples include charging a battery driven by an external electrical power source, or photosynthesis driven by absorption of
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visib ...
usually in the form of sunlight). A reaction may be classified as
redox Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or ...
in which
oxidation Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or ...
and reduction occur or nonredox in which there is no oxidation and reduction occurring. Most simple redox reactions may be classified as a combination, decomposition, or single displacement reaction. Different chemical reactions are used during
chemical synthesis As a topic of chemistry, chemical synthesis (or combination) is the artificial execution of chemical reactions to obtain one or several products. This occurs by physical and chemical manipulations usually involving one or more reactions. In mod ...
in order to obtain the desired product. In
biochemistry Biochemistry or biological chemistry is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology and ...
, a consecutive series of chemical reactions (where the product of one reaction is the reactant of the next reaction) form
metabolic pathway In biochemistry, a metabolic pathway is a linked series of chemical reactions occurring within a cell. The reactants, products, and intermediates of an enzymatic reaction are known as metabolites, which are modified by a sequence of chemical ...
s. These reactions are often catalyzed by protein
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products ...
s. Enzymes increase the rates of biochemical reactions, so that metabolic syntheses and decompositions impossible under ordinary conditions can occur at the temperature and concentrations present within a cell. The general concept of a chemical reaction has been extended to reactions between entities smaller than atoms, including nuclear reactions, radioactive decays and reactions between elementary particles, as described by quantum field theory.


History

Chemical reactions such as combustion in fire, fermentation and the reduction of ores to metals were known since antiquity. Initial theories of transformation of materials were developed by Greek philosophers, such as the Four-Element Theory of Empedocles stating that any substance is composed of the four basic elements – fire, water, air and earth. In the
Middle Ages In the history of Europe, the Middle Ages or medieval period lasted approximately from the late 5th to the late 15th centuries, similar to the post-classical period of global history. It began with the fall of the Western Roman Empire ...
, chemical transformations were studied by
alchemists Alchemy (from Arabic: ''al-kīmiyā''; from Ancient Greek: χυμεία, ''khumeía'') is an ancient branch of natural philosophy, a philosophical and protoscientific tradition that was historically practiced in China, India, the Muslim ...
. They attempted, in particular, to convert lead into
gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile ...
, for which purpose they used reactions of lead and lead-copper alloys with sulfur. The artificial production of chemical substances already was a central goal for medieval alchemists. Examples include the synthesis of ammonium chloride from organic substances as described in the works (c. 850–950) attributed to Jābir ibn Ḥayyān, or the production of
mineral acids A mineral acid (or inorganic acid) is an acid derived from one or more inorganic compounds, as opposed to organic acids which are acidic, organic compounds. All mineral acids form hydrogen ions and the conjugate base when dissolved in water. Char ...
such as
sulfuric Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formula ...
and nitric acids by later alchemists, starting from c. 1300. The production of mineral acids involved the heating of sulfate and nitrate minerals such as copper sulfate, alum and saltpeter. In the 17th century,
Johann Rudolph Glauber Johann Rudolf Glauber (10 March 1604 – 16 March 1670) was a German-Dutch alchemist and chemist. Some historians of science have described him as one of the first chemical engineers. His discovery of sodium sulfate in 1625 led to the compou ...
produced hydrochloric acid and sodium sulfate by reacting sulfuric acid and sodium chloride. With the development of the lead chamber process in 1746 and the Leblanc process, allowing large-scale production of sulfuric acid and sodium carbonate, respectively, chemical reactions became implemented into the industry. Further optimization of sulfuric acid technology resulted in the contact process in the 1880s, and the Haber process was developed in 1909–1910 for
ammonia Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogenous ...
synthesis. From the 16th century, researchers including Jan Baptist van Helmont,
Robert Boyle Robert Boyle (; 25 January 1627 – 31 December 1691) was an Anglo-Irish natural philosopher, chemist, physicist, alchemist and inventor. Boyle is largely regarded today as the first modern chemist, and therefore one of the founders ...
, and
Isaac Newton Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, Theology, theologian, and author (described in his time as a "natural philosophy, natural philosopher"), widely ...
tried to establish theories of experimentally observed chemical transformations. The
phlogiston theory The phlogiston theory is a superseded scientific theory that postulated the existence of a fire-like element called phlogiston () contained within combustible bodies and released during combustion. The name comes from the Ancient Greek (''bur ...
was proposed in 1667 by Johann Joachim Becher. It postulated the existence of a fire-like element called "phlogiston", which was contained within combustible bodies and released during
combustion Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel (the reductant) and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combus ...
. This proved to be false in 1785 by Antoine Lavoisier who found the correct explanation of the combustion as a reaction with oxygen from the air. Joseph Louis Gay-Lussac recognized in 1808 that gases always react in a certain relationship with each other. Based on this idea and the atomic theory of John Dalton, Joseph Proust had developed the law of definite proportions, which later resulted in the concepts of stoichiometry and chemical equations. Regarding the organic chemistry, it was long believed that compounds obtained from living organisms were too complex to be obtained synthetically. According to the concept of vitalism, organic matter was endowed with a "vital force" and distinguished from inorganic materials. This separation was ended however by the synthesis of urea from inorganic precursors by Friedrich Wöhler in 1828. Other chemists who brought major contributions to organic chemistry include Alexander William Williamson with his
synthesis Synthesis or synthesize may refer to: Science Chemistry and biochemistry * Chemical synthesis, the execution of chemical reactions to form a more complex molecule from chemical precursors **Organic synthesis, the chemical synthesis of organ ...
of ethers and Christopher Kelk Ingold, who, among many discoveries, established the mechanisms of substitution reactions.


Characteristics

The general characteristics of chemical reactions are: * Evolution of a gas * Formation of a precipitate * Change in temperature * Change in state


Equations

Chemical equations are used to graphically illustrate chemical reactions. They consist of chemical or structural formulas of the reactants on the left and those of the products on the right. They are separated by an arrow (→) which indicates the direction and type of the reaction; the arrow is read as the word "yields". The tip of the arrow points in the direction in which the reaction proceeds. A double arrow () pointing in opposite directions is used for equilibrium reactions. Equations should be balanced according to the stoichiometry, the number of atoms of each species should be the same on both sides of the equation. This is achieved by scaling the number of involved molecules (A, B, C and D in a schematic example below) by the appropriate integers ''a, b, c'' and ''d''. : More elaborate reactions are represented by reaction schemes, which in addition to starting materials and products show important intermediates or transition states. Also, some relatively minor additions to the reaction can be indicated above the reaction arrow; examples of such additions are water, heat, illumination, a
catalyst Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
, etc. Similarly, some minor products can be placed below the arrow, often with a minus sign. Retrosynthetic analysis can be applied to design a complex synthesis reaction. Here the analysis starts from the products, for example by splitting selected chemical bonds, to arrive at plausible initial reagents. A special arrow (⇒) is used in retro reactions.


Elementary reactions

The elementary reaction is the smallest division into which a chemical reaction can be decomposed, it has no intermediate products. Most experimentally observed reactions are built up from many elementary reactions that occur in parallel or sequentially. The actual sequence of the individual elementary reactions is known as reaction mechanism. An elementary reaction involves a few molecules, usually one or two, because of the low probability for several molecules to meet at a certain time. The most important elementary reactions are unimolecular and bimolecular reactions. Only one molecule is involved in a unimolecular reaction; it is transformed by isomerization or a dissociation into one or more other molecules. Such reactions require the addition of energy in the form of heat or light. A typical example of a unimolecular reaction is the cis–trans isomerization, in which the cis-form of a compound converts to the trans-form or vice versa. In a typical dissociation reaction, a bond in a molecule splits (ruptures) resulting in two molecular fragments. The splitting can be homolytic or heterolytic. In the first case, the bond is divided so that each product retains an electron and becomes a neutral radical. In the second case, both electrons of the chemical bond remain with one of the products, resulting in charged ions. Dissociation plays an important role in triggering chain reactions, such as hydrogen–oxygen or polymerization reactions. :AB -> A + B : Dissociation of a molecule AB into fragments A and B For
bimolecular In chemistry, molecularity is the number of molecules that come together to react in an elementary (single-step) reactionAtkins, P.; de Paula, J. Physical Chemistry. Oxford University Press, 2014 and is equal to the sum of stoichiometric coeffic ...
reactions, two molecules collide and react with each other. Their merger is called
chemical synthesis As a topic of chemistry, chemical synthesis (or combination) is the artificial execution of chemical reactions to obtain one or several products. This occurs by physical and chemical manipulations usually involving one or more reactions. In mod ...
or an addition reaction. :A + B -> AB Another possibility is that only a portion of one molecule is transferred to the other molecule. This type of reaction occurs, for example, in
redox Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or ...
and acid-base reactions. In redox reactions, the transferred particle is an electron, whereas in acid-base reactions it is a proton. This type of reaction is also called metathesis. :HA + B -> A + HB for example :NaCl + AgNO3 -> NaNO3 + AgCl(v)


Chemical equilibrium

Most chemical reactions are reversible; that is, they can and do run in both directions. The forward and reverse reactions are competing with each other and differ in
reaction rates The reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit ...
. These rates depend on the concentration and therefore change with the time of the reaction: the reverse rate gradually increases and becomes equal to the rate of the forward reaction, establishing the so-called chemical equilibrium. The time to reach equilibrium depends on parameters such as temperature, pressure, and the materials involved, and is determined by the minimum free energy. In equilibrium, the
Gibbs free energy In thermodynamics, the Gibbs free energy (or Gibbs energy; symbol G) is a thermodynamic potential that can be used to calculate the maximum amount of work that may be performed by a thermodynamically closed system at constant temperature an ...
must be zero. The pressure dependence can be explained with the
Le Chatelier's principle Le Chatelier's principle (pronounced or ), also called Chatelier's principle (or the Equilibrium Law), is a principle of chemistry used to predict the effect of a change in conditions on chemical equilibria. The principle is named after French ...
. For example, an increase in pressure due to decreasing volume causes the reaction to shift to the side with fewer moles of gas. The reaction yield stabilizes at equilibrium but can be increased by removing the product from the reaction mixture or changed by increasing the temperature or pressure. A change in the concentrations of the reactants does not affect the equilibrium constant but does affect the equilibrium position.


Thermodynamics

Chemical reactions are determined by the laws of
thermodynamics Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws ...
. Reactions can proceed by themselves if they are
exergonic An exergonic process is one which there is a positive flow of energy from the system to the surroundings. This is in contrast with an endergonic process. Constant pressure, constant temperature reactions are exergonic if and only if the Gibbs ...
, that is if they release free energy. The associated free energy change of the reaction is composed of the changes of two different thermodynamic quantities,
enthalpy Enthalpy , a property of a thermodynamic system, is the sum of the system's internal energy and the product of its pressure and volume. It is a state function used in many measurements in chemical, biological, and physical systems at a constant ...
and
entropy Entropy is a scientific concept, as well as a measurable physical property, that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodyna ...
: :; \Delta G = \Delta H - T \cdot \Delta S. :: : free energy, : enthalpy, : temperature, : entropy, : difference (change between original and product) Reactions can be exothermic, where Δ''H'' is negative and energy is released. Typical examples of exothermic reactions are
combustion Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel (the reductant) and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combus ...
,
precipitation In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravitational pull from clouds. The main forms of precipitation include drizzle, rain, sleet, snow, ice pellets, graupel and hail. ...
and crystallization, in which ordered solids are formed from disordered gaseous or liquid phases. In contrast, in
endothermic In thermochemistry, an endothermic process () is any thermodynamic process with an increase in the enthalpy (or internal energy ) of the system.Oxtoby, D. W; Gillis, H.P., Butler, L. J. (2015).''Principle of Modern Chemistry'', Brooks Cole. ...
reactions, heat is consumed from the environment. This can occur by increasing the entropy of the system, often through the formation of gaseous or dissolved reaction products, which have higher entropy. Since the entropy term in the free-energy change increases with temperature, many endothermic reactions preferably take place at high temperatures. On the contrary, many exothermic reactions such as crystallization occur preferably at lower temperatures. A change in temperature can sometimes reverse the sign of the enthalpy of a reaction, as for the
carbon monoxide Carbon monoxide ( chemical formula CO) is a colorless, poisonous, odorless, tasteless, flammable gas that is slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simpl ...
reduction of molybdenum dioxide: :2CO(g) + MoO2(s) -> 2CO2(g) + Mo(s); \Delta H^o = +21.86 \ \text This reaction to form
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is t ...
and molybdenum is endothermic at low temperatures, becoming less so with increasing temperature.Reaction Web
/ref> Δ''H''° is zero at , and the reaction becomes exothermic above that temperature. Changes in temperature can also reverse the direction tendency of a reaction. For example, the water gas shift reaction :CO(g) + H2O() <=> CO2(g) + H2(g) is favored by low temperatures, but its reverse is favored by high temperatures. The shift in reaction direction tendency occurs at . Reactions can also be characterized by their internal energy change, which takes into account changes in the entropy, volume and
chemical potential In thermodynamics, the chemical potential of a species is the energy that can be absorbed or released due to a change of the particle number of the given species, e.g. in a chemical reaction or phase transition. The chemical potential of a speci ...
s. The latter depends, among other things, on the activities of the involved substances. :; U = T\cdot S - p\cdot V + \mu\cdot n :: : internal energy, : entropy, : pressure, : chemical potential, : number of molecules, : small change sign


Kinetics

The speed at which reactions take place is studied by reaction kinetics. The rate depends on various parameters, such as: * Reactant concentrations, which usually make the reaction happen at a faster rate if raised through increased collisions per unit of time. Some reactions, however, have rates that are ''independent'' of reactant concentrations, due to a limited number of catalytic sites. These are called zero order reactions. *
Surface area The surface area of a solid object is a measure of the total area that the surface of the object occupies. The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of ...
available for contact between the reactants, in particular solid ones in heterogeneous systems. Larger surface areas lead to higher reaction rates. *
Pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country a ...
– increasing the pressure decreases the volume between molecules and therefore increases the frequency of collisions between the molecules. *
Activation energy In chemistry and physics, activation energy is the minimum amount of energy that must be provided for compounds to result in a chemical reaction. The activation energy (''E''a) of a reaction is measured in joules per mole (J/mol), kilojoules p ...
, which is defined as the amount of energy required to make the reaction start and carry on spontaneously. Higher activation energy implies that the reactants need more energy to start than a reaction with lower activation energy. * Temperature, which hastens reactions if raised, since higher temperature increases the energy of the molecules, creating more collisions per unit of time, * The presence or absence of a
catalyst Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
. Catalysts are substances that make weak bonds with reactants or intermediates and change the pathway (mechanism) of a reaction which in turn increases the speed of a reaction by lowering the
activation energy In chemistry and physics, activation energy is the minimum amount of energy that must be provided for compounds to result in a chemical reaction. The activation energy (''E''a) of a reaction is measured in joules per mole (J/mol), kilojoules p ...
needed for the reaction to take place. A catalyst is not destroyed or changed during a reaction, so it can be used again. * For some reactions, the presence of
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visib ...
, most notably
ultraviolet light Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiatio ...
, is needed to promote the breaking of bonds to start the reaction. This is particularly true for reactions involving
radicals Radical may refer to: Politics and ideology Politics *Radical politics, the political intent of fundamental societal change *Radicalism (historical), the Radical Movement that began in late 18th century Britain and spread to continental Europe and ...
. Several theories allow calculating the reaction rates at the molecular level. This field is referred to as reaction dynamics. The rate ''v'' of a
first-order reaction In chemistry, the rate law or rate equation for a reaction is an equation that links the initial or forward reaction rate with the concentrations or pressures of the reactants and constant parameters (normally rate coefficients and partial reactio ...
, which could be the disintegration of a substance A, is given by: : v= -\frac = k \cdot ce Its integration yields: :\ce(t) = \ce_ \cdot e^. Here ''k'' is the first-order rate constant, having dimension 1/time, ''t'') is the concentration at a time ''t'' and sub>0 is the initial concentration. The rate of a first-order reaction depends only on the concentration and the properties of the involved substance, and the reaction itself can be described with a characteristic
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ...
. More than one time constant is needed when describing reactions of higher order. The temperature dependence of the rate constant usually follows the Arrhenius equation: :k = k_0 e^ where ''E''a is the activation energy and ''k''B is the
Boltzmann constant The Boltzmann constant ( or ) is the proportionality factor that relates the average relative kinetic energy of particles in a gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin and the gas constan ...
. One of the simplest models of reaction rate is the collision theory. More realistic models are tailored to a specific problem and include the transition state theory, the calculation of the potential energy surface, the Marcus theory and the Rice–Ramsperger–Kassel–Marcus (RRKM) theory.


Reaction types


Four basic types


Synthesis

In a synthesis reaction, two or more simple substances combine to form a more complex substance. These reactions are in the general form: A + B->AB Two or more reactants yielding one product is another way to identify a synthesis reaction. One example of a synthesis reaction is the combination of
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in ...
and sulfur to form iron(II) sulfide: 8Fe + S8->8FeS Another example is simple hydrogen gas combined with simple oxygen gas to produce a more complex substance, such as water.To react or not to react?
Utah State Office of Education. Retrieved 4 June 2011.


Decomposition

A decomposition reaction is when a more complex substance breaks down into its more simple parts. It is thus the opposite of a synthesis reaction and can be written as AB->A + B One example of a decomposition reaction is the electrolysis of water to make
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements ...
and
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-to ...
gas: 2H2O->2H2 + O2


Single displacement

In a single displacement reaction, a single uncombined element replaces another in a compound; in other words, one element trades places with another element in a compound These reactions come in the general form of: A + BC->AC + B One example of a single displacement reaction is when
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ...
replaces hydrogen in water to make magnesium hydroxide and hydrogen gas: Mg + 2H2O->Mg(OH)2 + H2 (^)


Double displacement

In a
double displacement reaction A salt metathesis reaction, sometimes called a double displacement reaction, is a chemical process involving the exchange of chemical bond, bonds between two reacting chemical species which results in the creation of products with similar or ident ...
, the anions and cations of two compounds switch places and form two entirely different compounds. These reactions are in the general form: AB + CD->AD + CB For example, when barium chloride (BaCl2) and magnesium sulfate (MgSO4) react, the SO42− anion switches places with the 2Cl anion, giving the compounds BaSO4 and MgCl2. Another example of a double displacement reaction is the reaction of lead(II) nitrate with potassium iodide to form lead(II) iodide and
potassium nitrate Potassium nitrate is a chemical compound with the chemical formula . This alkali metal nitrate salt is also known as Indian saltpetre (large deposits of which were historically mined in India). It is an ionic salt of potassium ions K+ and ...
: Pb(NO3)2 + 2KI->PbI2(v) + 2KNO3


Combustion

In a
combustion Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel (the reductant) and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combus ...
reaction, an element or compound reacts with an oxidant, usually
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements ...
, often producing energy in the form of
heat In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is ...
or
light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 t ...
. Combustion reactions frequently involve a
hydrocarbon In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons are examples of group 14 hydrides. Hydrocarbons are generally colourless and hydrophobic, and their odors are usually weak or ...
. For instance, the combustion of 1 mole (114 g) of octane in oxygen C8H18(l) + 25/2 O2(g)->8CO2 + 9H2O(l) releases 5500 kJ. A combustion reaction can also result from
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon ma ...
,
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ...
or sulfur reacting with oxygen. 2Mg(s) + O2->2MgO(s) S(s) + O2(g)->SO2(g)


Oxidation and reduction

Redox Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or ...
reactions can be understood in terms of the transfer of electrons from one involved species (
reducing agent In chemistry, a reducing agent (also known as a reductant, reducer, or electron donor) is a chemical species that "donates" an electron to an (called the , , , or ). Examples of substances that are commonly reducing agents include the Earth met ...
) to another ( oxidizing agent). In this process, the former species is ''oxidized'' and the latter is ''reduced''. Though sufficient for many purposes, these descriptions are not precisely correct. Oxidation is better defined as an increase in oxidation state of atoms and reduction as a decrease in oxidation state. In practice, the transfer of electrons will always change the oxidation state, but there are many reactions that are classed as "redox" even though no electron transfer occurs (such as those involving
covalent A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atom ...
bonds). In the following redox reaction, hazardous
sodium Sodium is a chemical element with the symbol Na (from Latin ''natrium'') and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable ...
metal reacts with toxic chlorine gas to form the ionic compound sodium chloride, or common table salt: 2Na(s) + Cl2(g)->2NaCl(s) In the reaction, sodium metal goes from an oxidation state of 0 (as it is a pure element) to +1: in other words, the sodium lost one electron and is said to have been oxidized. On the other hand, the chlorine gas goes from an oxidation of 0 (it is also a pure element) to −1: the chlorine gains one electron and is said to have been reduced. Because the chlorine is the one reduced, it is considered the electron acceptor, or in other words, induces oxidation in the sodium – thus the chlorine gas is considered the oxidizing agent. Conversely, the sodium is oxidized or is the electron donor, and thus induces a reduction in the other species and is considered the ''reducing agent''. Which of the involved reactants would be a reducing or oxidizing agent can be predicted from the electronegativity of their elements. Elements with low electronegativities, such as most metals, easily donate electrons and oxidize – they are reducing agents. On the contrary, many oxides or ions with high oxidation numbers of their non-oxygen atoms, such as , , , , or , can gain one or two extra electrons and are strong oxidizing agents. For some main-group elements the number of electrons donated or accepted in a redox reaction can be predicted from the electron configuration of the reactant element. Elements try to reach the low-energy noble gas configuration, and therefore alkali metals and halogens will donate and accept one electron, respectively. Noble gases themselves are chemically inactive. The overall redox reaction can be balanced by combining the oxidation and reduction half-reactions multiplied by coefficients such that the number of electrons lost in the oxidation equals the number of electrons gained in the reduction. An important class of redox reactions are the electrolytic electrochemical reactions, where electrons from the power supply at the negative electrode are used as the reducing agent and electron withdrawal at the positive electrode as the oxidizing agent. These reactions are particularly important for the production of chemical elements, such as chlorine or
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. It ha ...
. The reverse process, in which electrons are released in redox reactions and chemical energy is converted to electrical energy, is possible and used in
batteries Battery most often refers to: * Electric battery, a device that provides electrical power * Battery (crime), a crime involving unlawful physical contact Battery may also refer to: Energy source *Automotive battery, a device to provide power t ...
.


Complexation

In complexation reactions, several ligands react with a metal atom to form a
coordination complex A coordination complex consists of a central atom or ion, which is usually metallic and is called the ''coordination centre'', and a surrounding array of bound molecules or ions, that are in turn known as '' ligands'' or complexing agents. M ...
. This is achieved by providing lone pairs of the ligand into empty orbitals of the metal atom and forming
dipolar bond In coordination chemistry, a coordinate covalent bond, also known as a dative bond, dipolar bond, or coordinate bond is a kind of two-center, two-electron covalent bond in which the two electrons derive from the same atom. The bonding of metal i ...
s. The ligands are Lewis bases, they can be both ions and neutral molecules, such as carbon monoxide, ammonia or water. The number of ligands that react with a central metal atom can be found using the 18-electron rule, saying that the valence shells of a
transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. They are the elements that can ...
will collectively accommodate 18
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
s, whereas the symmetry of the resulting complex can be predicted with the
crystal field theory Crystal field theory (CFT) describes the breaking of degeneracies of electron orbital states, usually ''d'' or ''f'' orbitals, due to a static electric field produced by a surrounding charge distribution (anion neighbors). This theory has been used ...
and ligand field theory. Complexation reactions also include
ligand exchange In coordination chemistry, a ligand is an ion or molecule (functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's elect ...
, in which one or more ligands are replaced by another, and redox processes which change the oxidation state of the central metal atom.


Acid–base reactions

In the
Brønsted–Lowry acid–base theory The Brønsted–Lowry theory (also called proton theory of acids and bases) is an acid–base reaction theory which was proposed independently by Johannes Nicolaus Brønsted and Thomas Martin Lowry in 1923. The fundamental concept of this theory ...
, an
acid–base reaction An acid–base reaction is a chemical reaction that occurs between an acid and a base. It can be used to determine pH via titration. Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their appl ...
involves a transfer of protons (H+) from one species (the acid) to another (the base). When a proton is removed from an acid, the resulting species is termed that acid's conjugate base. When the proton is accepted by a base, the resulting species is termed that base's
conjugate acid A conjugate acid, within the Brønsted–Lowry acid–base theory, is a chemical compound formed when an acid donates a proton () to a base—in other words, it is a base with a hydrogen ion added to it, as in the reverse reaction it loses a ...
. In other words, acids act as proton donors and bases act as proton acceptors according to the following equation: \underset + \underset <=> \underset + \underset The reverse reaction is possible, and thus the acid/base and conjugated base/acid are always in equilibrium. The equilibrium is determined by the acid and base dissociation constants (''K''a and ''K''b) of the involved substances. A special case of the acid-base reaction is the neutralization where an acid and a base, taken at the exact same amounts, form a neutral salt. Acid-base reactions can have different definitions depending on the acid-base concept employed. Some of the most common are: * Arrhenius definition: Acids dissociate in water releasing H3O+ ions; bases dissociate in water releasing OH ions. * Brønsted–Lowry definition: Acids are proton (H+) donors, bases are proton acceptors; this includes the Arrhenius definition. * Lewis definition: Acids are electron-pair acceptors, and bases are electron-pair donors; this includes the Brønsted-Lowry definition.


Precipitation

Precipitation In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravitational pull from clouds. The main forms of precipitation include drizzle, rain, sleet, snow, ice pellets, graupel and hail. ...
is the formation of a solid in a solution or inside another solid during a chemical reaction. It usually takes place when the concentration of dissolved ions exceeds the solubility limit and forms an insoluble salt. This process can be assisted by adding a precipitating agent or by the removal of the solvent. Rapid precipitation results in an amorphous or microcrystalline residue and a slow process can yield single crystals. The latter can also be obtained by recrystallization from microcrystalline salts.


Solid-state reactions

Reactions can take place between two solids. However, because of the relatively small
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical ...
rates in solids, the corresponding chemical reactions are very slow in comparison to liquid and gas phase reactions. They are accelerated by increasing the reaction temperature and finely dividing the reactant to increase the contacting surface area.


Reactions at the solid/gas interface

The reaction can take place at the solid, gas interface, surfaces at very low pressure such as
ultra-high vacuum Ultra-high vacuum (UHV) is the vacuum regime characterised by pressures lower than about . UHV conditions are created by pumping the gas out of a UHV chamber. At these low pressures the mean free path of a gas molecule is greater than approximatel ...
. Via scanning tunneling microscopy, it is possible to observe reactions at the solid, gas interface in real space, if the time scale of the reaction is in the correct range. Reactions at the solid, gas interface are in some cases related to catalysis.


Photochemical reactions

In photochemical reactions, atoms and molecules absorb energy ( photons) of the illumination light and convert it into an excited state. They can then release this energy by breaking chemical bonds, thereby producing radicals. Photochemical reactions include hydrogen–oxygen reactions, radical polymerization, chain reactions and rearrangement reactions. Many important processes involve photochemistry. The premier example is photosynthesis, in which most plants use solar energy to convert
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is t ...
and water into
glucose Glucose is a simple sugar with the molecular formula . Glucose is overall the most abundant monosaccharide, a subcategory of carbohydrates. Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, u ...
, disposing of
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements ...
as a side-product. Humans rely on photochemistry for the formation of vitamin D, and vision is initiated by a photochemical reaction of rhodopsin. In fireflies, an
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products ...
in the abdomen catalyzes a reaction that results in bioluminescence. Many significant photochemical reactions, such as ozone formation, occur in the Earth atmosphere and constitute atmospheric chemistry.


Catalysis

In catalysis, the reaction does not proceed directly, but through a reaction with a third substance known as
catalyst Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
. Although the catalyst takes part in the reaction, forming weak bonds with reactants or intermediates, it is returned to its original state by the end of the reaction and so is not consumed. However, it can be inhibited, deactivated or destroyed by secondary processes. Catalysts can be used in a different phase ( heterogeneous) or in the same phase ( homogeneous) as the reactants. In heterogeneous catalysis, typical secondary processes include
coking Coking is the heating of coal in the absence of oxygen to a temperature above 600 °C to drive off the volatile components of the raw coal, leaving a hard, strong, porous material of high carbon content called coke. Coke consists almost en ...
where the catalyst becomes covered by
polymer A polymer (; Greek '' poly-'', "many" + '' -mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
ic side products. Additionally, heterogeneous catalysts can dissolve into the solution in a solid-liquid system or evaporate in a solid–gas system. Catalysts can only speed up the reaction – chemicals that slow down the reaction are called inhibitors. Substances that increase the activity of catalysts are called promoters, and substances that deactivate catalysts are called catalytic poisons. With a catalyst, a reaction that is kinetically inhibited by high activation energy can take place in the circumvention of this activation energy. Heterogeneous catalysts are usually solids, powdered in order to maximize their surface area. Of particular importance in heterogeneous catalysis are the platinum group metals and other transition metals, which are used in hydrogenations,
catalytic reforming Catalytic reforming is a chemical process used to convert petroleum refinery naphthas distilled from crude oil (typically having low octane ratings) into high-octane liquid products called reformates, which are premium blending stocks for high-oc ...
and in the synthesis of commodity chemicals such as nitric acid and
ammonia Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogenous ...
. Acids are an example of a homogeneous catalyst, they increase the nucleophilicity of carbonyls, allowing a reaction that would not otherwise proceed with electrophiles. The advantage of homogeneous catalysts is the ease of mixing them with the reactants, but they may also be difficult to separate from the products. Therefore, heterogeneous catalysts are preferred in many industrial processes.


Reactions in organic chemistry

In organic chemistry, in addition to oxidation, reduction or acid-base reactions, a number of other reactions can take place which involves covalent bonds between carbon atoms or carbon and heteroatoms (such as oxygen, nitrogen, halogens, etc.). Many specific reactions in organic chemistry are name reactions designated after their discoverers.


Substitution

In a substitution reaction, a
functional group In organic chemistry, a functional group is a substituent or moiety in a molecule that causes the molecule's characteristic chemical reactions. The same functional group will undergo the same or similar chemical reactions regardless of the r ...
in a particular chemical compound is replaced by another group. These reactions can be distinguished by the type of substituting species into a nucleophilic, electrophilic or radical substitution. In the first type, a nucleophile, an atom or molecule with an excess of electrons and thus a negative charge or partial charge, replaces another atom or part of the "substrate" molecule. The electron pair from the nucleophile attacks the substrate forming a new bond, while the leaving group departs with an electron pair. The nucleophile may be electrically neutral or negatively charged, whereas the substrate is typically neutral or positively charged. Examples of nucleophiles are
hydroxide Hydroxide is a diatomic anion with chemical formula OH−. It consists of an oxygen and hydrogen atom held together by a single covalent bond, and carries a negative electric charge. It is an important but usually minor constituent of water. ...
ion, alkoxides,
amine In chemistry, amines (, ) are compounds and functional groups that contain a basic nitrogen atom with a lone pair. Amines are formally derivatives of ammonia (), wherein one or more hydrogen atoms have been replaced by a substituent ...
s and halides. This type of reaction is found mainly in aliphatic hydrocarbons, and rarely in aromatic hydrocarbon. The latter have high electron density and enter nucleophilic aromatic substitution only with very strong electron withdrawing groups. Nucleophilic substitution can take place by two different mechanisms, SN1 and SN2. In their names, S stands for substitution, N for nucleophilic, and the number represents the kinetic order of the reaction, unimolecular or bimolecular. The SN1 reaction proceeds in two steps. First, the leaving group is eliminated creating a carbocation. This is followed by a rapid reaction with the nucleophile. In the SN2 mechanisms, the nucleophile forms a transition state with the attacked molecule, and only then the leaving group is cleaved. These two mechanisms differ in the stereochemistry of the products. SN1 leads to the non-stereospecific addition and does not result in a chiral center, but rather in a set of geometric isomers (''cis/trans''). In contrast, a reversal ( Walden inversion) of the previously existing stereochemistry is observed in the SN2 mechanism. Electrophilic substitution is the counterpart of the nucleophilic substitution in that the attacking atom or molecule, an electrophile, has low electron density and thus a positive charge. Typical electrophiles are the carbon atom of carbonyl groups, carbocations or sulfur or nitronium cations. This reaction takes place almost exclusively in aromatic hydrocarbons, where it is called electrophilic aromatic substitution. The electrophile attack results in the so-called σ-complex, a transition state in which the aromatic system is abolished. Then, the leaving group, usually a proton, is split off and the aromaticity is restored. An alternative to aromatic substitution is electrophilic aliphatic substitution. It is similar to the nucleophilic aliphatic substitution and also has two major types, SE1 and SE2 In the third type of substitution reaction, radical substitution, the attacking particle is a radical. This process usually takes the form of a chain reaction, for example in the reaction of alkanes with halogens. In the first step, light or heat disintegrates the halogen-containing molecules producing radicals. Then the reaction proceeds as an avalanche until two radicals meet and recombine. :;X. + R-H -> X-H + R. :;R. + X2 -> R-X + X. :: Reactions during the chain reaction of radical substitution


Addition and elimination

The addition and its counterpart, the elimination, are reactions that change the number of substituents on the carbon atom, and form or cleave multiple bonds.
Double A double is a look-alike or doppelgänger; one person or being that resembles another. Double, The Double or Dubble may also refer to: Film and television * Double (filmmaking), someone who substitutes for the credited actor of a character * ...
and
triple bond A triple bond in chemistry is a chemical bond between two atoms involving six bonding electrons instead of the usual two in a covalent single bond. Triple bonds are stronger than the equivalent single bonds or double bonds, with a bond order o ...
s can be produced by eliminating a suitable leaving group. Similar to the nucleophilic substitution, there are several possible reaction mechanisms that are named after the respective reaction order. In the E1 mechanism, the leaving group is ejected first, forming a carbocation. The next step, the formation of the double bond, takes place with the elimination of a proton (
deprotonation Deprotonation (or dehydronation) is the removal (transfer) of a proton (or hydron, or hydrogen cation), (H+) from a Brønsted–Lowry acid in an acid–base reaction.Henry Jakubowski, Biochemistry Online Chapter 2A3, https://employees.csbsju. ...
). The leaving order is reversed in the E1cb mechanism, that is the proton is split off first. This mechanism requires the participation of a base. Because of the similar conditions, both reactions in the E1 or E1cb elimination always compete with the SN1 substitution. The E2 mechanism also requires a base, but there the attack of the base and the elimination of the leaving group proceed simultaneously and produce no ionic intermediate. In contrast to the E1 eliminations, different stereochemical configurations are possible for the reaction product in the E2 mechanism, because the attack of the base preferentially occurs in the anti-position with respect to the leaving group. Because of the similar conditions and reagents, the E2 elimination is always in competition with the SN2-substitution. The counterpart of elimination is an addition where double or triple bonds are converted into single bonds. Similar to substitution reactions, there are several types of additions distinguished by the type of the attacking particle. For example, in the electrophilic addition of hydrogen bromide, an electrophile (proton) attacks the double bond forming a carbocation, which then reacts with the nucleophile (bromine). The carbocation can be formed on either side of the double bond depending on the groups attached to its ends, and the preferred configuration can be predicted with the Markovnikov's rule. This rule states that "In the heterolytic addition of a polar molecule to an alkene or alkyne, the more electronegative (nucleophilic) atom (or part) of the polar molecule becomes attached to the carbon atom bearing the smaller number of hydrogen atoms." If the addition of a functional group takes place at the less substituted carbon atom of the double bond, then the electrophilic substitution with acids is not possible. In this case, one has to use the hydroboration–oxidation reaction, wherein the first step, the boron atom acts as electrophile and adds to the less substituted carbon atom. In the second step, the nucleophilic
hydroperoxide Hydroperoxides or peroxols are compounds containing the hydroperoxide functional group (ROOH). If the R is organic, the compounds are called organic hydroperoxides. Such compounds are a subset of organic peroxides, which have the formula ROOR. ...
or halogen anion attacks the boron atom. While the addition to the electron-rich alkenes and alkynes is mainly electrophilic, the nucleophilic addition plays an important role in the carbon-heteroatom multiple bonds, and especially its most important representative, the carbonyl group. This process is often associated with elimination so that after the reaction the carbonyl group is present again. It is, therefore, called an addition-elimination reaction and may occur in carboxylic acid derivatives such as chlorides, esters or anhydrides. This reaction is often catalyzed by acids or bases, where the acids increase the electrophilicity of the carbonyl group by binding to the oxygen atom, whereas the bases enhance the nucleophilicity of the attacking nucleophile. Nucleophilic addition of a carbanion or another nucleophile to the double bond of an alpha, beta-unsaturated carbonyl compound can proceed via the Michael reaction, which belongs to the larger class of conjugate additions. This is one of the most useful methods for the mild formation of C–C bonds. Some additions which can not be executed with nucleophiles and electrophiles can be succeeded with free radicals. As with the free-radical substitution, the radical addition proceeds as a chain reaction, and such reactions are the basis of the free-radical polymerization.


Other organic reaction mechanisms

In a rearrangement reaction, the carbon skeleton of a
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and b ...
is rearranged to give a structural isomer of the original molecule. These include hydride shift reactions such as the Wagner-Meerwein rearrangement, where a
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-to ...
, alkyl or
aryl In organic chemistry, an aryl is any functional group or substituent derived from an aromatic ring, usually an aromatic hydrocarbon, such as phenyl and naphthyl. "Aryl" is used for the sake of abbreviation or generalization, and "Ar" is used ...
group migrates from one carbon to a neighboring carbon. Most rearrangements are associated with the breaking and formation of new carbon-carbon bonds. Other examples are sigmatropic reaction such as the Cope rearrangement. Cyclic rearrangements include
cycloaddition In organic chemistry, a cycloaddition is a chemical reaction in which "two or more unsaturated molecules (or parts of the same molecule) combine with the formation of a cyclic adduct in which there is a net reduction of the bond multiplicity" ...
s and, more generally,
pericyclic reaction In organic chemistry, a pericyclic reaction is the type of organic reaction wherein the transition state of the molecule has a cyclic geometry, the reaction progresses in a concerted fashion, and the bond orbitals involved in the reaction over ...
s, wherein two or more double bond-containing molecules form a cyclic molecule. An important example of cycloaddition reaction is the Diels–Alder reaction (the so-called +2cycloaddition) between a conjugated
diene In organic chemistry a diene ( ) (diolefin ( ) or alkadiene) is a covalent compound that contains two double bonds, usually among carbon atoms. They thus contain two alk''ene'' units, with the standard prefix ''di'' of systematic nomenclature. ...
and a substituted
alkene In organic chemistry, an alkene is a hydrocarbon containing a carbon–carbon double bond. Alkene is often used as synonym of olefin, that is, any hydrocarbon containing one or more double bonds.H. Stephen Stoker (2015): General, Organic ...
to form a substituted
cyclohexene Cyclohexene is a hydrocarbon with the formula C6H10. This cycloalkene is a colorless liquid with a sharp smell. It is an intermediate in various industrial processes. Cyclohexene is not very stable upon long term storage with exposure to light ...
system. Whether a certain cycloaddition would proceed depends on the electronic orbitals of the participating species, as only orbitals with the same sign of wave function will overlap and interact constructively to form new bonds. Cycloaddition is usually assisted by light or heat. These perturbations result in a different arrangement of electrons in the excited state of the involved molecules and therefore in different effects. For example, the +2Diels-Alder reactions can be assisted by heat whereas the +2cycloaddition is selectively induced by light. Because of the orbital character, the potential for developing stereoisomeric products upon cycloaddition is limited, as described by the Woodward–Hoffmann rules.


Biochemical reactions

Biochemical reactions are mainly controlled by enzymes. These
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
s can specifically catalyze a single reaction so that reactions can be controlled very precisely. The reaction takes place in the active site, a small part of the enzyme which is usually found in a cleft or pocket lined by
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha ...
residues, and the rest of the enzyme is used mainly for stabilization. The catalytic action of enzymes relies on several mechanisms including the molecular shape ("induced fit"), bond strain, proximity and orientation of molecules relative to the enzyme, proton donation or withdrawal (acid/base catalysis), electrostatic interactions and many others. The biochemical reactions that occur in living organisms are collectively known as
metabolism Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run ...
. Among the most important of its mechanisms is the anabolism, in which different DNA and enzyme-controlled processes result in the production of large molecules such as
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
s and carbohydrates from smaller units.
Bioenergetics Bioenergetics is a field in biochemistry and cell biology that concerns energy flow through living systems. This is an active area of biological research that includes the study of the transformation of energy in living organisms and the study of ...
studies the sources of energy for such reactions. Important energy sources are
glucose Glucose is a simple sugar with the molecular formula . Glucose is overall the most abundant monosaccharide, a subcategory of carbohydrates. Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, u ...
and
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements ...
, which can be produced by plants via photosynthesis or assimilated from food and air, respectively. All organisms use this energy to produce
adenosine triphosphate Adenosine triphosphate (ATP) is an organic compound that provides energy to drive many processes in living cells, such as muscle contraction, nerve impulse propagation, condensate dissolution, and chemical synthesis. Found in all known forms ...
(ATP), which can then be used to energize other reactions.


Applications

Chemical reactions are central to chemical engineering, where they are used for the synthesis of new compounds from natural raw materials such as
petroleum Petroleum, also known as crude oil, or simply oil, is a naturally occurring yellowish-black liquid mixture of mainly hydrocarbons, and is found in geological formations. The name ''petroleum'' covers both naturally occurring unprocessed crud ...
, mineral ores, and
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements ...
in air. It is essential to make the reaction as efficient as possible, maximizing the yield and minimizing the number of reagents, energy inputs and waste.
Catalyst Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
s are especially helpful for reducing the energy required for the reaction and increasing its reaction rate. Some specific reactions have their niche applications. For example, the thermite reaction is used to generate light and heat in pyrotechnics and welding. Although it is less controllable than the more conventional oxy-fuel welding, arc welding and flash welding, it requires much less equipment and is still used to mend rails, especially in remote areas.


Monitoring

Mechanisms of monitoring chemical reactions depend strongly on the reaction rate. Relatively slow processes can be analyzed in situ for the concentrations and identities of the individual ingredients. Important tools of real-time analysis are the measurement of pH and analysis of optical absorption (color) and emission spectra. A less accessible but rather efficient method is the introduction of a radioactive isotope into the reaction and monitoring how it changes over time and where it moves to; this method is often used to analyze the redistribution of substances in the human body. Faster reactions are usually studied with ultrafast laser spectroscopy where utilization of femtosecond
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The ...
s allows short-lived transition states to be monitored at a time scaled down to a few femtoseconds.
Atkins Atkins may refer to: Places in the United States * Atkins, Arkansas, a city * Atkins, Iowa, a city * Atkins, Louisiana, an unincorporated community * Atkins, Nebraska, an unincorporated community * Atkins, Virginia, a census-designated place * ...
, p. 987


See also

* Chemical equation * Chemical reaction ** Substrate ** Reagent **
Catalyst Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
** Product *
Chemical reaction model Chemical reaction models transform physical knowledge into a mathematical formulation that can be utilized in computational simulation of practical problems in chemical engineering. Computer simulation provides the flexibility to study chemical p ...
*
Chemist A chemist (from Greek ''chēm(ía)'' alchemy; replacing ''chymist'' from Medieval Latin ''alchemist'') is a scientist trained in the study of chemistry. Chemists study the composition of matter and its properties. Chemists carefully describe th ...
*
Chemistry Chemistry is the scientific study of the properties and behavior of matter. It is a natural science that covers the elements that make up matter to the compounds made of atoms, molecules and ions: their composition, structure, proper ...
*
Combustion Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel (the reductant) and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combus ...
*
Limiting reagent The limiting reagent (or limiting reactant or limiting agent) in a chemical reaction is a reactant that is totally consumed when the chemical reaction is completed. The amount of product formed is limited by this reagent, since the reaction cann ...
*
List of organic reactions Well-known reactions and reagents in organic chemistry include 0-9 * 1,2-Wittig rearrangement * 1,3-Dipolar cycloaddition * 2,3-Wittig rearrangement A * Abramovitch–Shapiro tryptamine synthesis *Acetalisation * Acetoacetic ester condensation ...
*
Mass balance In physics, a mass balance, also called a material balance, is an application of conservation of mass to the analysis of physical systems. By accounting for material entering and leaving a system, mass flows can be identified which might have b ...
* Microscopic reversibility * Organic reaction * Reaction progress kinetic analysis *
Reversible reaction A reversible reaction is a reaction in which the conversion of reactants to products and the conversion of products to reactants occur simultaneously. : \mathit aA + \mathit bB \mathit cC + \mathit dD A and B can react to form C and D or, in the ...


References


Bibliography

* * * * * {{DEFAULTSORT:Chemical Reaction Chemistry Change