HOME

TheInfoList



OR:

Eternal inflation is a hypothetical inflationary universe model, which is itself an outgrowth or extension of the
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
theory. According to eternal inflation, the inflationary phase of the universe's expansion lasts forever throughout most of the universe. Because the regions expand exponentially rapidly, most of the volume of the universe at any given time is inflating. Eternal inflation, therefore, produces a hypothetically infinite
multiverse The multiverse is a hypothetical group of multiple universes. Together, these universes comprise everything that exists: the entirety of space, time, matter, energy, information, and the physical laws and constants that describe them. The dif ...
, in which only an insignificant
fractal In mathematics, a fractal is a geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scales, as ill ...
volume ends inflation.
Paul Steinhardt Paul Joseph Steinhardt (born December 25, 1952) is an American theoretical physicist whose principal research is in cosmology and condensed matter physics. He is currently the Albert Einstein Professor in Science at Princeton University, where ...
, one of the original researchers of the inflationary model, introduced the first example of eternal inflation in 1983, and
Alexander Vilenkin Alexander Vilenkin (russian: Алекса́ндр Виле́нкин; uk, Олександр Віленкін; born 13 May 1949) is the Leonard Jane Holmes Bernstein Professor of Evolutionary Science and Director of the Institute of Cosmology a ...
showed that it is generic.
Alan Guth Alan Harvey Guth (; born February 27, 1947) is an American theoretical physicist and cosmologist. Guth has researched elementary particle theory (and how particle theory is applicable to the early universe). He is Victor Weisskopf Professor of ...
's 2007 paper, "Eternal inflation and its implications", states that under reasonable assumptions "Although inflation is generically eternal into the future, it is not eternal into the past." Guth detailed what was known about the subject at the time, and demonstrated that eternal inflation was still considered the likely outcome of inflation, more than 20 years after eternal inflation was first introduced by Steinhardt.


Overview


Development of the theory

Inflation, or the inflationary universe theory, was originally developed as a way to overcome the few remaining problems with what was otherwise considered a successful theory of cosmology, the Big Bang model. In 1979, Alan Guth introduced the inflationary model of the universe to explain why the universe is flat and homogeneous (which refers to the smooth distribution of matter and radiation on a large scale). The basic idea was that the universe underwent a period of rapidly accelerating expansion a few instants after the Big Bang. He offered a mechanism for causing the inflation to begin:
false vacuum In quantum field theory, a false vacuum is a hypothetical vacuum that is relatively stable, but not in the most stable state possible. This condition is known as metastable. It may last for a very long time in that state, but could eventually ...
energy. Guth coined the term "inflation," and was the first to discuss the theory with other scientists worldwide. Guth's original formulation was problematic, as there was no consistent way to bring an end to the inflationary epoch and end up with the hot,
isotropic Isotropy is uniformity in all orientations; it is derived . Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix ' or ', hence '' anisotropy''. ''Anisotropy'' is also used to describ ...
, homogeneous universe observed today. Although the false vacuum could decay into empty "bubbles" of "true vacuum" that expanded at the speed of light, the empty bubbles could not coalesce to reheat the universe, because they could not keep up with the remaining inflating universe. In 1982, this " graceful exit problem" was solved independently by
Andrei Linde Andrei Dmitriyevich Linde (russian: Андре́й Дми́триевич Ли́нде; born March 2, 1948) is a Russian-American theoretical physicist and the Harald Trap Friis Professor of Physics at Stanford University. Linde is one of the ...
and by Andreas Albrecht and Paul J. Steinhardt who showed how to end inflation without making empty bubbles and, instead, end up with a hot expanding universe. The basic idea was to have a continuous "slow-roll" or slow evolution from false vacuum to true without making any bubbles. The improved model was called "new inflation." In 1983, Paul Steinhardt was the first to show that this "new inflation" does not have to end everywhere. Instead, it might only end in a finite patch or a hot bubble full of matter and radiation, and that inflation continues in most of the universe while producing hot bubble after hot bubble along the way. Alexander Vilenkin showed that when quantum effects are properly included, this is actually generic to all new inflation models. Using ideas introduced by Steinhardt and Vilenkin, Andrei Linde published an alternative model of inflation in 1986 which used these ideas to provide a detailed description of what has become known as the Chaotic Inflation theory or eternal inflation.


Quantum fluctuations

New inflation does not produce a perfectly symmetric universe due to quantum fluctuations during inflation. The fluctuations cause the energy and matter density to be different at different points in space. Quantum fluctuations in the hypothetical inflation field produce changes in the rate of expansion that are responsible for eternal inflation. Those regions with a higher rate of inflation expand faster and dominate the universe, despite the natural tendency of inflation to end in other regions. This allows inflation to continue forever, to produce future-eternal inflation. As a simplified example, suppose that during inflation, the natural decay rate of the
inflaton The inflaton field is a hypothetical scalar field which is conjectured to have driven cosmic inflation in the very early universe. The field, originally postulated by Alan Guth, provides a mechanism by which a period of rapid expansion from 10&m ...
field is slow compared to the effect of quantum fluctuation. When a mini-universe inflates and "self-reproduces" into, say, twenty causally-disconnected mini-universes of equal size to the original mini-universe, perhaps nine of the new mini-universes will have a larger, rather than smaller, average inflaton field value than the original mini-universe, because they inflated from regions of the original mini-universe where quantum fluctuation pushed the inflaton value up more than the slow inflation decay rate brought the inflaton value down. Originally there was one mini-universe with a given inflaton value; now there are nine mini-universes that have a slightly larger inflaton value. (Of course, there are also eleven mini-universes where the inflaton value is slightly lower than it originally was.) Each mini-universe with the larger inflaton field value restarts a similar round of approximate self-reproduction within itself. (The mini-universes with lower inflaton values may also reproduce, unless its inflaton value is small enough that the region drops out of inflation and ceases self-reproduction.) This process continues indefinitely; nine high-inflaton mini-universes might become 81, then 729... Thus, there is eternal inflation. In 1980, quantum fluctuations were suggested by
Viatcheslav Mukhanov Viatcheslav Fyodorovich Mukhanov (russian: Вячесла́в Фёдорович Муха́нов; born October 2, 1956) is a Soviet/Russian born German theoretical physicist and cosmologist. He is best known for the theory of Quantum Origin of t ...
and
Gennady Chibisov Gennady Chibisov (russian: Геннадий Чибисов; September 23, 1946 – August 7, 2008) was a Soviet/Russian cosmologist. He obtained his PhD in 1972, from the Moscow Institute of Physics and Technology, with a thesis entitled "Entropy p ...
in the Soviet Union in the context of a model of modified gravity by
Alexei Starobinsky Alexei Alexandrovich Starobinsky (russian: Алексе́й Алекса́ндрович Староби́нский; born 19 April 1948) is a Soviet and Russian astrophysicist and cosmologist. He received the Kavli Prize in Astrophysics "for p ...
to be possible seeds for forming galaxies. In the context of inflation, quantum fluctuations were first analyzed at the three-week 1982 Nuffield Workshop on the Very Early Universe at Cambridge University. The average strength of the fluctuations was first calculated by four groups working separately over the course of the workshop: Stephen Hawking; Starobinsky; Guth and
So-Young Pi So-Young Pi ( ko, 피서영; born 1946) is a South Korean physicist. So-Young Pi's father was the Korean writer Pi Chun-deuk.James M. Bardeen James Maxwell Bardeen (May 9, 1939 – June 20, 2022) was an American physicist, well known for his work in general relativity, particularly his role in formulating the laws of black hole mechanics. He also discovered the Bardeen vacuum, an e ...
,
Paul Steinhardt Paul Joseph Steinhardt (born December 25, 1952) is an American theoretical physicist whose principal research is in cosmology and condensed matter physics. He is currently the Albert Einstein Professor in Science at Princeton University, where ...
and Michael Turner. The early calculations derived at the Nuffield Workshop only focused on the average fluctuations, whose magnitude is too small to affect inflation. However, beginning with the examples presented by Steinhardt and Vilenkin, the same quantum physics was later shown to produce occasional large fluctuations that increase the rate of inflation and keep inflation going eternally.


Further developments

In analyzing the Planck Satellite data from 2013, Anna Ijjas and Paul Steinhardt showed that the simplest textbook inflationary models were eliminated and that the remaining models require exponentially more tuned starting conditions, more parameters to be adjusted, and less inflation. Later Planck observations reported in 2015 confirmed these conclusions. A 2014 paper by Kohli and Haslam called into question the viability of the eternal inflation theory, by analyzing Linde's chaotic inflation theory in which the quantum fluctuations are modeled as Gaussian white noise. They showed that in this popular scenario, eternal inflation in fact cannot be eternal, and the random noise leads to spacetime being filled with singularities. This was demonstrated by showing that solutions to the Einstein field equations diverge in a finite time. Their paper therefore concluded that the theory of eternal inflation based on random quantum fluctuations would not be a viable theory, and the resulting existence of a multiverse is "still very much an open question that will require much deeper investigation".


Inflation, eternal inflation, and the multiverse

In 1983, it was shown that inflation could be eternal, leading to a
multiverse The multiverse is a hypothetical group of multiple universes. Together, these universes comprise everything that exists: the entirety of space, time, matter, energy, information, and the physical laws and constants that describe them. The dif ...
in which space is broken up into bubbles or patches whose properties differ from patch to patch spanning all physical possibilities. Paul Steinhardt, who produced the first example of eternal inflation, eventually became a strong and vocal opponent of the theory. He argued that the multiverse represented a breakdown of the inflationary theory, because, in a multiverse, any outcome is equally possible, so inflation makes no predictions and, hence, is untestable. Consequently, he argued, inflation fails a key condition for a
scientific theory A scientific theory is an explanation of an aspect of the natural world and universe that has been repeatedly tested and corroborated in accordance with the scientific method, using accepted protocols of observation, measurement, and evaluati ...
. Both Linde and Guth, however, continued to support the inflationary theory and the multiverse. Guth declared: According to Linde, "It's possible to invent models of inflation that do not allow a multiverse, but it's difficult. Every experiment that brings better credence to inflationary theory brings us much closer to hints that the multiverse is real." In 2018 the late Stephen Hawking and
Thomas Hertog Thomas Hertog is a Belgian cosmologist at KU Leuven university and a key collaborator of Professor Stephen Hawking. Early life Thomas Hertog was born on 27 May 1975. He graduated Summa cum laude from KU Leuven in 1997 with an MSc degree in phys ...
published a paper in which the need for an infinite multiverse vanishes as Hawking describes their theory gives universes which are "reasonably smooth and globally finite". The theory uses the
holographic principle The holographic principle is an axiom in string theories and a supposed property of quantum gravity that states that the description of a volume of space can be thought of as encoded on a lower-dimensional boundary to the region — such as a ...
to define an 'exit plane' from the timeless state of eternal inflation, the universes which are generated on the plane are described using a redefinition of the no-boundary wavefunction, in fact the theory requires a boundary at the beginning of time. Stated simply Hawking says that their findings "imply a significant reduction of the multiverse" which as the University of Cambridge points out, makes the theory "predictive and testable" using
gravitational wave astronomy Gravitational-wave astronomy is an emerging branch of observational astronomy which aims to use gravitational waves (minute distortions of spacetime predicted by Albert Einstein's theory of general relativity) to collect observational data about ...
.


See also

*
Astrophysics Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline said, Astrophysics "seeks to ascertain the nature of the h ...
*
Cosmology Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', and in 1731 taken up in Latin by German philosopher ...
*
Inflation (cosmology) In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the early universe. The inflationary epoch lasted from  seconds after the conjectured Big Bang singulari ...
*
Fractal cosmology In physical cosmology, fractal cosmology is a set of minority cosmological theories which state that the distribution of matter in the Universe, or the structure of the universe itself, is a fractal across a wide range of scales (see also: multi ...
*
Physical cosmology Physical cosmology is a branch of cosmology concerned with the study of cosmological models. A cosmological model, or simply cosmology, provides a description of the largest-scale structures and dynamics of the universe and allows study of f ...
*
Shape of the universe The shape of the universe, in physical cosmology, is the local and global geometry of the universe. The local features of the geometry of the universe are primarily described by its curvature, whereas the topology of the universe describes ge ...
*
False vacuum In quantum field theory, a false vacuum is a hypothetical vacuum that is relatively stable, but not in the most stable state possible. This condition is known as metastable. It may last for a very long time in that state, but could eventually ...


References


External links


'Multiverse' theory suggested by microwave background
BBC News, 3 August 2011 about testing eternal inflation. {{DEFAULTSORT:Eternal inflation Inflation (cosmology) Physical cosmology Multiverse