HOME

TheInfoList



OR:

: 220px, Cadmium sulfide, a prototypical metal chalcogenide, is used as a yellow pigment. A chalcogenide is a chemical compound consisting of at least one
chalcogen The chalcogens (ore forming) ( ) are the chemical elements in group 16 of the periodic table. This group is also known as the oxygen family. Group 16 consists of the elements oxygen (O), sulfur (S), selenium (Se), tellurium (Te), and the radioac ...
anion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conve ...
and at least one more
electropositive Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the ...
element. Although all group 16 elements of the periodic table are defined as chalcogens, the term chalcogenide is more commonly reserved for
sulfide Sulfide (British English also sulphide) is an inorganic anion of sulfur with the chemical formula S2− or a compound containing one or more S2− ions. Solutions of sulfide salts are corrosive. ''Sulfide'' also refers to chemical compounds la ...
s,
selenide A selenide is a chemical compound containing a selenium anion with oxidation number of −2 (Se2−), much as sulfur does in a sulfide. The chemistry of the selenides and sulfides is similar. Similar to sulfide, in aqueous solution, the selenide ion ...
s, tellurides, and
polonide A polonide is a chemical compound of the radioactive element polonium with any element less electronegative than polonium. Polonides are usually prepared by a direct reaction between the elements at temperatures of around 300–400 °C... They a ...
s, rather than
oxide An oxide () is a chemical compound that contains at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– (molecular) ion. with oxygen in the oxidation state of −2. Most of the E ...
s. Many metal ores exist as chalcogenides.
Photoconductive Photoconductivity is an optical and electrical phenomenon in which a material becomes more electrically conductive due to the absorption of electromagnetic radiation such as visible light, ultraviolet light, infrared light, or gamma radiation. Whe ...
chalcogenide glass Chalcogenide glass (pronounced hard ''ch'' as in ''chemistry'') is a glass containing one or more chalcogens (sulfur, selenium and tellurium, but excluding oxygen). Such glasses are covalently bonded materials and may be classified as covalent netw ...
es are used in
xerography Xerography is a dry photocopying technique. Originally called electrophotography, it was renamed xerography—from the roots el, ξηρός, label=none ''xeros'', meaning "dry" and -γραφία ''-graphia'', meaning "writing"—to emphasiz ...
. Some pigments and catalysts are also based on chalcogenides. The metal dichalcogenide MoS2 is a common solid lubricant.


Alkali metal and alkaline earth chalcogenides

Alkali metal and alkaline earth monochalcogenides are salt-like, being colourless and often water-soluble. The sulfides tend to undergo hydrolysis to form derivatives containing bisulfide (SH) anions. The alkali metal chalcogenides often crystallize with the anti
fluorite Fluorite (also called fluorspar) is the mineral form of calcium fluoride, CaF2. It belongs to the halide minerals. It crystallizes in isometric cubic habit, although octahedral and more complex isometric forms are not uncommon. The Mohs sca ...
structure and the alkaline earth salts in the
sodium chloride Sodium chloride , commonly known as salt (although sea salt also contains other chemical salts), is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chloride ions. With molar masses of 22.99 and 35. ...
motif. :


Transition metal chalcogenides

Transition metal chalcogenides occur with many stoichiometries and many structures.Vaughan, D. J.; Craig, J. R. “Mineral Chemistry of Metal Sulfides" Cambridge University Press, Cambridge: 1978. . Most common and most important technologically, however, are the chalcogenides of simple stoichiometries, such as 1:1 and 1:2. Extreme cases include metal-rich phases (e.g. Ta2S), which exhibit extensive metal-metal bonding, and chalcogenide-rich materials such as Re2S7, which features extensive chalcogen-chalcogen bonding. For the purpose of classifying these materials, the chalcogenide is often viewed as a dianion, i.e., S2−, Se2−, Te2−, and Po2−. In fact, transition metal chalcogenides are highly
covalent A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atom ...
, not ionic, as indicated by their semiconducting properties.


Metal-rich chalcogenides

In most of their chalcogenides, transition metals adopt oxidation states of II or greater. Nonetheless, several examples exist where the metallic atoms far outnumber the chalcogens. Such compounds typically have extensive metal-metal bonding.


Monochalcogenides

Metal monochalcogenides have the formula ME, where M = a transition metal and E = S, Se, Te. They typically crystallize in one of two motifs, named after the corresponding forms of
zinc sulfide Zinc sulfide (or zinc sulphide) is an inorganic compound with the chemical formula of ZnS. This is the main form of zinc found in nature, where it mainly occurs as the mineral sphalerite. Although this mineral is usually black because of various ...
. In the zinc blende structure, the sulfide atoms pack in a cubic symmetry and the Zn2+ ions occupy half of the tetrahedral holes. The result is a diamondoid framework. The main alternative structure for the monochalcogenides is the wurtzite structure wherein the atom connectivities are similar (tetrahedral), but the crystal symmetry is hexagonal. A third motif for metal monochalcogenide is the nickel arsenide lattice, where the metal and chalcogenide each have octahedral and trigonal prismatic coordination, respectively. This motif is commonly subject to
nonstoichiometry In chemistry, non-stoichiometric compounds are chemical compounds, almost always solid inorganic compounds, having elemental composition whose proportions cannot be represented by a ratio of small natural numbers (i.e. an empirical formula); mo ...
. Important monochalcogenides include some
pigment A pigment is a colored material that is completely or nearly insoluble in water. In contrast, dyes are typically soluble, at least at some stage in their use. Generally dyes are often organic compounds whereas pigments are often inorganic compou ...
s, notably
cadmium sulfide Cadmium sulfide is the inorganic compound with the formula CdS. Cadmium sulfide is a yellow solid.Egon Wiberg, Arnold Frederick Holleman (2001''Inorganic Chemistry'' Elsevier It occurs in nature with two different crystal structures as the rare mi ...
. Many minerals and ores are monosulfides.Greenwood, N. N.; & Earnshaw, A. (1997). Chemistry of the Elements (2nd Edn.), Oxford:Butterworth-Heinemann. .


Dichalcogenides

Metal dichalcogenides have the formula ME2, where M = a transition metal and E = S, Se, Te.Wells, A.F. (1984) Structural Inorganic Chemistry, Oxford: Clarendon Press. . The most important members are the sulfides. They are always dark diamagnetic solids, insoluble in all solvents, and exhibit semiconducting properties. Some are supeconductors. In terms of their electronic structures, these compounds are usually viewed as derivatives of M4+, where M4+ = Ti4+ (d0 configuration), V4+ (d1 configuration), Mo4+ (d2 configuration). Titanium disulfide was investigated in prototype
cathode A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. A conventional current describes the direction in whi ...
s for secondary batteries, exploiting its ability to reversibly undergo intercalation by
lithium Lithium (from el, λίθος, lithos, lit=stone) is a chemical element with the symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard conditions, it is the least dense metal and the least dense soli ...
. Molybdenum disulfide is the subject of thousand articles and the main ore of molybdenum, termed
molybdenite Molybdenite is a mineral of molybdenum disulfide, Mo S2. Similar in appearance and feel to graphite, molybdenite has a lubricating effect that is a consequence of its layered structure. The atomic structure consists of a sheet of molybdenum ato ...
. It is used as a solid lubricant and catalyst for
hydrodesulfurization Hydrodesulfurization (HDS) is a catalytic chemical process widely used to remove sulfur (S) from natural gas and from refined petroleum products, such as gasoline or petrol, jet fuel, kerosene, diesel fuel, and fuel oils. The purpose of rem ...
. The corresponding diselenides and even ditellurides are known, e.g., TiSe2, MoSe2, and WSe2.


Transition metals

Transition metal dichalcogenides typically adopt either cadmium diiodide or
molybdenum disulfide Molybdenum disulfide (or moly) is an inorganic compound composed of molybdenum and sulfur. Its chemical formula is . The compound is classified as a transition metal dichalcogenide. It is a silvery black solid that occurs as the mineral molybdeni ...
structures. In the CdI2 motif, the metals exhibit octahedral structures. In the MoS2 motif, which is not observed for dihalides, the metals exhibit trigonal prismatic structures. The strong bonding between the metal and chalcogenide ligands, contrasts with the weak chalcogenide—chalcogenide bonding between the layers. Owing to these contrasting bond strengths, these materials engage in intercalation by
alkali metals The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K),The symbols Na and K for sodium and potassium are derived from their Latin names, ''natrium'' and ''kalium''; these are still the origins of the names ...
. The intercalation process is accompanied by charge transfer, reducing the M(IV) centers to M(III). The attraction between electrons and holes in 2D tungsten diselenide is 100s of times stronger than in a typical 3D semiconductor.


Pyrite and related disulfides

In contrast to classical metal dichalcogenides,
iron pyrite The mineral pyrite (), or iron pyrite, also known as fool's gold, is an iron sulfide with the chemical formula Fe S2 (iron (II) disulfide). Pyrite is the most abundant sulfide mineral. Pyrite's metallic luster and pale brass-yellow hue gi ...
, a common mineral, is usually described as consisting of Fe2+ and the persulfido anion S22−. The sulfur atoms within the disulfido dianion are bound together via a short S-S bond. "Late" transition metal disulfides (Mn, Fe, Co, Ni) almost always adopt the pyrite or the related
marcasite The mineral marcasite, sometimes called “white iron pyrite”, is iron sulfide (FeS2) with orthorhombic crystal structure. It is physically and crystallographically distinct from pyrite, which is iron sulfide with cubic crystal structure. Both ...
motif, in contrast to early metals (V, Ti, Mo, W) which adopt 4+ oxidation state with two chalcogenide dianions.


Tri- and tetrachalcogenides

Several metals, mainly for the early metals (Ti, V, Cr, Mn groups) also form trichalcogenides. These materials are usually described as M4+(E22−)(E2−) (where E = S, Se, Te). A well known example is
niobium triselenide Niobium triselenide is an inorganic compound belonging to the class of transition metal trichalcogenides. It has the formula NbSe3. It was the first reported example of one-dimensional compound to exhibit the phenomenon of sliding charge density ...
. Amorphous MoS3 is produced by treatment of tetrathiomolybdate with acid: :MoS42− + 2 H+ → MoS3 + H2S The mineral patrónite, which has the formula VS4, is an example of a metal tetrachalcogenide. Crystallographic analysis shows that the material can be considered a bis(persulfide), i.e. V4+,(S22−)2.


Main group chalcogenides

: Chalcogen derivatives are known for all of the
main group element In chemistry and atomic physics, the main group is the group of elements (sometimes called the representative elements) whose lightest members are represented by helium, lithium, beryllium, boron, carbon, nitrogen, oxygen, and fluorine as arran ...
s except the noble gases. Usually, their stoichiometries follow the classical valence trends, e.g. SiS2, B2S3, Sb2S3. Many exceptions exist however, e.g. P4S3 and S4N4. The structures of many main group materials are dictated by directional covalent bonding, rather than by close packing. The chalcogen is assigned positive oxidation states for the halides, nitrides, and oxides.


See also

*
Phase-change memory Phase-change memory (also known as PCM, PCME, PRAM, PCRAM, OUM (ovonic unified memory) and C-RAM or CRAM (chalcogenide RAM)) is a type of non-volatile random-access memory. PRAMs exploit the unique behaviour of chalcogenide glass. In PCM, heat pr ...
*
Chalcogen The chalcogens (ore forming) ( ) are the chemical elements in group 16 of the periodic table. This group is also known as the oxygen family. Group 16 consists of the elements oxygen (O), sulfur (S), selenium (Se), tellurium (Te), and the radioac ...
* Negative resistance *
Chalcogenide glass Chalcogenide glass (pronounced hard ''ch'' as in ''chemistry'') is a glass containing one or more chalcogens (sulfur, selenium and tellurium, but excluding oxygen). Such glasses are covalently bonded materials and may be classified as covalent netw ...
*
Hydrogen chalcogenide Hydrogen chalcogenides (also chalcogen hydrides or hydrogen chalcides) are binary compounds of hydrogen with chalcogen atoms (elements of group 16: oxygen, sulfur, selenium, tellurium, and polonium). Water, the first chemical compound in this serie ...
*
Carbon dichalcogenide Carbon dichalcogenides are chemical compounds of carbon and chalcogen elements. They have the general chemical formula CZ2, where Z = O, S, Se, Te. This includes: * Carbon dioxide, * Carbon disulfide, * Carbon diselenide, * Carbonyl sulfide, O ...


References


External links


Advanced Chalcogenide Technologies and Applications Lab
''ACTAlab'' Jun 14, 2016
Phase change memory-based 'moneta' system points to the future of computer storage
''ScienceBlog'' Jun 03, 2011 *{{cite journal , last1 = Kovalenko , first1 = Maksym V. , last2 = Scheele , first2 = Marcus , last3 = Talapin , first3 = Dmitri V. , title = Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands , journal = Science , year = 2009 , volume = 324 , issue = 5933 , pages = 1417–1420 , doi=10.1126/science.1170524, pmid = 19520953 , bibcode = 2009Sci...324.1417K, s2cid = 21845356
Big Blue boffins hatch dirt-cheap solar cells
The Register, 12 February 2010