cerium(IV) oxide–cerium(III) oxide cycle
   HOME

TheInfoList



OR:

The cerium(IV) oxide–cerium(III) oxide cycle or CeO2/Ce2O3 cycle is a two-step
thermochemical Thermochemistry is the study of the heat energy which is associated with chemical reactions and/or phase changes such as melting and boiling. A reaction may release or absorb energy, and a phase change may do the same. Thermochemistry focuses on ...
process that employs
cerium(IV) oxide Cerium(IV) oxide, also known as ceric oxide, ceric dioxide, ceria, cerium oxide or cerium dioxide, is an oxide of the rare-earth metal cerium. It is a pale yellow-white powder with the chemical formula CeO2. It is an important commercial produc ...
and
cerium(III) oxide Cerium(III) oxide, also known as cerium oxide, cerium trioxide, cerium sesquioxide, cerous oxide or dicerium trioxide, is an oxide of the rare-earth metal cerium. It has chemical formula and is gold-yellow in color. Applications Engine and exha ...
for
hydrogen production Hydrogen production is the family of industrial methods for generating hydrogen gas. As of 2020, the majority of hydrogen (∼95%) is produced from fossil fuels by steam reforming of natural gas and other light hydrocarbons, partial oxidation of h ...
. The
cerium Cerium is a chemical element with the symbol Ce and atomic number 58. Cerium is a soft, ductile, and silvery-white metal that tarnishes when exposed to air. Cerium is the second element in the lanthanide series, and while it often shows the +3 o ...
-based cycle allows the separation of H2 and O2 in two steps, making high-temperature gas separation redundant.


Process description

The thermochemical two-step
water splitting Water splitting is the chemical reaction in which water is broken down into oxygen and hydrogen: :2 H2O → 2 H2 + O2 Efficient and economical water splitting would be a technological breakthrough that could underpin a hydrogen economy, base ...
process (
thermochemical cycle Thermochemical cycles combine solely heat sources (''thermo'') with ''chemical'' reactions to split water into its hydrogen and oxygen components. The term ''cycle'' is used because aside of water, hydrogen and oxygen, the chemical compounds used in ...
) uses
redox Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate (chemistry), substrate change. Oxidation is the loss of Electron, electrons or an increase in the oxidation state, while reduction ...
systems: *
Dissociation Dissociation, in the wide sense of the word, is an act of disuniting or separating a complex object into parts. Dissociation may also refer to: * Dissociation (chemistry), general process in which molecules or ionic compounds (complexes, or salts ...
: 2 CeO2Ce2O3 + 0.5 O2 *
Hydrolysis Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution reaction, substitution, elimination reaction, elimination, and solvation reactions in which water ...
: Ce2O3 + H2O → 2 CeO2 + H2 For the first
endothermic In thermochemistry, an endothermic process () is any thermodynamic process with an increase in the enthalpy (or internal energy ) of the system.Oxtoby, D. W; Gillis, H.P., Butler, L. J. (2015).''Principle of Modern Chemistry'', Brooks Cole. p. ...
step, cerium(IV) oxide is thermally dissociated in an
inert gas An inert gas is a gas that does not readily undergo chemical reactions with other chemical substances and therefore does not readily form chemical compounds. The noble gases often do not react with many substances and were historically referred to ...
atmosphere at and 100-200
mbar The bar is a metric unit of pressure, but not part of the International System of Units (SI). It is defined as exactly equal to 100,000  Pa (100 kPa), or slightly less than the current average atmospheric pressure on Earth at sea leve ...
into cerium(III) oxide and oxygen. In the second
exothermic In thermodynamics, an exothermic process () is a thermodynamic process or reaction that releases energy from the system to its surroundings, usually in the form of heat, but also in a form of light (e.g. a spark, flame, or flash), electricity (e ...
step cerium(III) oxide reacts at – in a fixed bed reactor with water and produces
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
and cerium(IV) oxide.


See also

*
Copper–chlorine cycle The copper–chlorine cycle (Cu–Cl cycle) is a four-step thermochemical cycle for the production of hydrogen. The Cu–Cl cycle is a hybrid process that employs both thermochemical and electrolysis steps. It has a maximum temperature requirement ...
*
Heliostat A heliostat (from ''helios'', the Greek word for ''sun'', and ''stat'', as in stationary) is a device that includes a mirror, usually a plane mirror, which turns so as to keep reflecting sunlight toward a predetermined target, compensating ...
*
Hybrid sulfur cycle The hybrid sulfur cycle (HyS) is a two-step water-splitting process intended to be used for hydrogen production. Based on sulfur oxidation and reduction, it is classified as a hybrid thermochemical cycle because it uses an electrochemical (inste ...
* HYDROSOL *
Iron oxide cycle For chemical reactions, the iron oxide cycle (Fe3O4/FeO) is the original two-step thermochemical cycle proposed for use for hydrogen production. It is based on the reduction and subsequent oxidation of iron ions, particularly the reduction and oxid ...
*
Solar thermal energy Solar thermal energy (STE) is a form of energy and a technology for harnessing solar energy to generate thermal energy for use in industry, and in the residential and commercial sectors. Solar thermal collectors are classified by the United St ...
*
Sulfur–iodine cycle The sulfur–iodine cycle (S–I cycle) is a three-step thermochemical cycle used to produce hydrogen. The S–I cycle consists of three chemical reactions whose net reactant is water and whose net products are hydrogen and oxygen. All other che ...
*
Zinc–zinc oxide cycle For chemical reactions, the zinc–zinc oxide cycle or Zn–ZnO cycle is a two step thermochemical cycle based on zinc and zinc oxide for hydrogen production with a typical efficiency around 40%. Process description The thermochemical two-step wat ...


References


External links


Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides
{{DEFAULTSORT:Cerium(Iv) Oxide-Cerium(Iii) Oxide Cycle Chemical reactions Hydrogen production Cerium