HOME

TheInfoList



OR:

A cementoblast is a
biological cell The cell is the basic structural and functional unit of life forms. Every cell consists of a cytoplasm enclosed within a membrane, and contains many biomolecules such as proteins, DNA and RNA, as well as many small molecules of nutrients and ...
that forms from the follicular cells around the root of a tooth, and whose biological function is
cementogenesis Cementogenesis is the formation of cementum, one of the three mineralized substances of a tooth. Cementum covers the roots of teeth and serves to anchor gingival and periodontal fibers of the periodontal ligament by the fibers to the alveolar bone ( ...
, which is the formation of
cementum Cementum is a specialized calcified substance covering the root of a tooth. The cementum is the part of the periodontium that attaches the teeth to the alveolar bone by anchoring the periodontal ligament.Illustrated Dental Embryology, Histology, a ...
(hard tissue that covers the tooth root). The mechanism of differentiation of the cementoblasts is controversial but circumstantial evidence suggests that an epithelium or epithelial component may cause dental sac cells to differentiate into cementoblasts, characterised by an increase in length. Other theories involve Hertwig
epithelial root sheath The Hertwig epithelial root sheath (HERS) or epithelial root sheath is a proliferation of epithelial cells located at the cervical loop of the enamel organ in a developing tooth. Hertwig epithelial root sheath initiates the formation of dentin ...
(HERS) being involved.


Structure

Thus cementoblasts resemble bone-forming osteoblasts but differ functionally and histologically. The cells of cementum are the entrapped cementoblasts, the cementocytes. Each cementocyte lies in its lacuna (plural, lacunae), similar to the pattern noted in bone. These lacunae also have canaliculi or canals. Unlike those in bone, however, these canals in cementum do not contain nerves, nor do they radiate outward. Instead, the canals are oriented toward the periodontal ligament (PDL) and contain cementocytic processes that exist to diffuse nutrients from the ligament because it is vascularized. The progenitor cells also found in the PDL region contribute to the mineralization of the tissue. Once in this situation, the cementoblasts lose their secretory activity and become cementocytes. However, a layer of cementoblasts is always present along the outer covering of the PDL; these cells can then produce cementum if the tooth is injured (see
hypercementosis Hypercementosis is an idiopathic, non-neoplastic condition characterized by the excessive buildup of normal cementum (calcified tissue) on the roots of one or more teeth. A thicker layer of cementum can give the tooth an enlarged appearance, which ...
).


See also

*
Cementum Cementum is a specialized calcified substance covering the root of a tooth. The cementum is the part of the periodontium that attaches the teeth to the alveolar bone by anchoring the periodontal ligament.Illustrated Dental Embryology, Histology, a ...
*
Cementogenesis Cementogenesis is the formation of cementum, one of the three mineralized substances of a tooth. Cementum covers the roots of teeth and serves to anchor gingival and periodontal fibers of the periodontal ligament by the fibers to the alveolar bone ( ...
*
Tooth development Tooth development or odontogenesis is the complex process by which teeth form from embryonic cells, grow, and erupt into the mouth. For human teeth to have a healthy oral environment, all parts of the tooth must develop during appropriate st ...
*
Cementoblastoma Cementoblastoma, or benign cementoblastoma, is a relatively rare benign neoplasm of the cementum of the teeth. It is derived from ectomesenchyme of odontogenic origin. Cementoblastomas represent less than 0.69–8% of all odontogemic tumors. Signs ...
* Enamel * List of human cell types derived from the germ layers


References


External links

* Cementoblasts at http://www.copewithcytokines.de/cope.cgi?key=cementoblasts{{Tooth development Cells Human cells Tooth development