HOME

TheInfoList



OR:

Cataclasite is a cohesive granular fault rock.
Comminution Comminution is the reduction of solid materials from one average particle size to a smaller average particle size, by crushing, grinding, cutting, vibrating, or other processes. In geology, it occurs naturally during faulting in the upper part ...
, also known as cataclasis, is an important process in forming cataclasites. They fall into the category of
cataclastic rock A cataclastic rock is a type of fault rock that has been wholly or partly formed by the progressive fracturing and comminution of existing rocks, a process known as ''cataclasis''. Cataclasis involves the granulation, crushing, or milling of the ori ...
s which are formed through faulting or fracturing in the upper crust. Cataclasites are distinguished from
fault gouge Fault gouge is a type of fault rock best defined by its grain size. It is found as incohesive fault rock (rock which can be broken into its component granules at the present outcrop, only aided with fingers/pen-knife), with less than 30% clasts ...
, which is incohesive, and
fault breccia Fault breccia ( or ; Italian for "breach"), or tectonic breccia, is a breccia (a rock type consisting of angular clasts) that was formed by tectonic forces. Fault breccia is a tectonite formed by localized zone of brittle deformation (a fault ...
, which contains coarser fragments.


Types

Cataclasites are composed of fragments of the pre-existing
wall rock Wall rock is the rock that constitutes the wall of an area undergoing geologic activity. Examples are the rock along the neck of a volcano, on the edge of a pluton that is being emplaced, along a fault plane, enclosing a mineral deposit, or where a ...
as well as a
matrix Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** '' The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchi ...
consisting of crushed microfragments, which cohesively holds the rock together. There are different types of classification schemes for cataclasites in the fault rock literature. The original classification scheme by Sibson classifies them by their proportion of fine-grained matrix to angular fragments. The term fault breccia is used for describing a cataclasite with coarser grains. A
fault breccia Fault breccia ( or ; Italian for "breach"), or tectonic breccia, is a breccia (a rock type consisting of angular clasts) that was formed by tectonic forces. Fault breccia is a tectonite formed by localized zone of brittle deformation (a fault ...
is a cataclastic rock with clasts that are larger than two millimeters making up at least 30% of the rock. These are the varieties based on the classification scheme of cataclasites proposed by Sibson: : protocataclasite : a type of cataclasite in which the matrix takes up less than 50% of the total volume, : mesocataclasite : a type of cataclasite in which the matrix occupies between 50 and 90 percent of the total volume, and : ultracataclasite : a type of cataclasite characterized by a matrix occupying greater than 90% of the total volume. This classification scheme separates distinct features of cataclasites, but any fault rock that has been formed through brittle deformation mechanisms containing pieces of the fractured pre-existing rock type are normally referred to as cataclasites. Cataclasites are different from
mylonite Mylonite is a fine-grained, compact metamorphic rock produced by dynamic recrystallization of the constituent minerals resulting in a reduction of the grain size of the rock. Mylonites can have many different mineralogical compositions; it is a ...
s, another type of fault rock, that is classified by the presence of a
schistosity Schist ( ) is a medium-grained metamorphic rock showing pronounced schistosity. This means that the rock is composed of mineral grains easily seen with a low-power hand lens, oriented in such a way that the rock is easily split into thin flakes o ...
formed through ductile deformation methods. Although cataclasites often lack an oriented fabric, some cataclasites are foliated. According to Sibson's 1975 classification scheme, these would be classified as mylonites although it was proven experimentally that some cataclastic mechanisms can form cataclasites with an oriented foliation solely due to brittle deformation. In a modification to the original definitions, the foliated fault rock would be still considered a cataclasite because it was created by cataclastic mechanisms.


Formation

Cataclasites form though the progressive fracturing of
mineral In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid chemical compound with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed. (2 ...
grains and aggregates, a process known as
comminution Comminution is the reduction of solid materials from one average particle size to a smaller average particle size, by crushing, grinding, cutting, vibrating, or other processes. In geology, it occurs naturally during faulting in the upper part ...
. Cataclasites are the result of comminution, along with frictional sliding and grain rotation during faulting. This crushing, frictional sliding and rotation of grains is referred to as
cataclasis A cataclastic rock is a type of fault rock that has been wholly or partly formed by the progressive fracturing and comminution of existing rocks, a process known as ''cataclasis''. Cataclasis involves the granulation, crushing, or milling of the ori ...
. Comminution, along with frictional sliding and grain boundary rotation can allow a rock to macroscopically flow over a wide brittle zone in the crust. This macroscopic flow due to the combination of brittle deformation mechanisms can be referred to as cataclastic flow.


Setting

Many faults near the earth's surface are brittle and show evidence of low temperature deformation. At low temperatures, there is not enough energy for the crystal grains to deform plastically, thus each grain fractures as opposed to elongation or recrystallizing. In these systems, cataclasites would be more likely to form as opposed to mylonites, which would require crystal plastic deformation. Due to quartz being the main mineral in many rocks in the brittle regime of the crust, the brittle-ductile transition for quartz can be a good indication of where cataclasites would form before ductile deformation plays a role. This normally refers to the uppermost 10–12 km of the continental crust.


References

{{Structural geology Metamorphic rocks Structural geology