HOME

TheInfoList



OR:

In
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which re ...
, a body force is a force that acts throughout the volume of a body. Springer site - Book 'Solid mechanics'
preview paragraph 'Body forces'.
/ref> Forces due to
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the str ...
, electric fields and
magnetic fields A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
are examples of body forces. Body forces contrast with
contact force A contact force is any force that occurs as a result of two objects making contact with each other. Contact forces are ubiquitous and are responsible for most visible interactions between macroscopic collections of matter. Pushing a car or kicking ...
s or
surface force Surface force denoted ''fs'' is the force that acts across an internal or external surface element in a material body. Surface force can be decomposed into two perpendicular components: normal forces and shear forces. A normal force acts norma ...
s which are exerted to the surface of an object.
Normal force In mechanics, the normal force F_n is the component of a contact force that is perpendicular to the surface that an object contacts, as in Figure 1. In this instance '' normal'' is used in the geometric sense and means perpendicular, as oppo ...
s and
shear force In solid mechanics, shearing forces are unaligned forces acting on one part of a body in a specific direction, and another part of the body in the opposite direction. When the forces are collinear (aligned with each other), they are called t ...
s between objects are surface forces as they are exerted to the surface of an object. All cohesive surface attraction and contact forces between objects are also considered as surface forces.
Fictitious forces A fictitious force is a force that appears to act on a mass whose motion is described using a non-inertial frame of reference, such as a linearly accelerating or rotating reference frame. It is related to Newton's second law of motion, which tre ...
such as the
centrifugal force In Newtonian mechanics, the centrifugal force is an inertial force (also called a "fictitious" or "pseudo" force) that appears to act on all objects when viewed in a rotating frame of reference. It is directed away from an axis which is parallel ...
,
Euler force In classical mechanics, the Euler force is the fictitious tangential force that appears when a non-uniformly rotating reference frame is used for analysis of motion and there is variation in the angular velocity of the reference frame's axes. The ...
, and the Coriolis effect are other examples of body forces.


Definition


Qualitative

A body force is simply a type of force, and so it has the same
dimensions In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordin ...
as
force In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a ...
, L] sup>−2. However, it is often convenient to talk about a body force in terms of either the
force In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a ...
per unit
volume Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). The ...
or the force per unit
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different eleme ...
. If the
force In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a ...
per unit
volume Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). The ...
is of interest, it is referred to as the
force density In fluid mechanics, the force density is the negative gradient of pressure. It has the physical dimensions of force per unit volume. Force density is a vector field representing the flux density of the hydrostatic force within the bulk of a fl ...
throughout the system. A body force is distinct from a contact force in that the force does not require contact for transmission. Thus, common forces associated with
pressure gradient In atmospheric science, the pressure gradient (typically of air but more generally of any fluid) is a physical quantity that describes in which direction and at what rate the pressure increases the most rapidly around a particular location. The ...
s and
conductive In physics and electrical engineering, a conductor is an object or type of material that allows the flow of charge ( electric current) in one or more directions. Materials made of metal are common electrical conductors. Electric current is ge ...
and convective heat transmission are not body forces as they require contact between systems to exist.
Radiation In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes: * ''electromagnetic radiation'', such as radio waves, microwaves, infrared, vi ...
heat transfer, on the other hand, is a perfect example of a body force. More examples of common body forces include; *
Gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the str ...
, *
Electric force Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventio ...
s acting on an object charged throughout its volume, *
Magnetic force In physics (specifically in electromagnetism) the Lorentz force (or electromagnetic force) is the combination of electric and magnetic force on a point charge due to electromagnetic fields. A particle of charge moving with a velocity in an elect ...
s acting on currents within an object, such as the braking force that results from
eddy currents Eddy currents (also called Foucault's currents) are loops of electrical current induced within conductors by a changing magnetic field in the conductor according to Faraday's law of induction or by the relative motion of a conductor in a magnet ...
,
Fictitious force A fictitious force is a force that appears to act on a mass whose motion is described using a non-inertial frame of reference, such as a linearly accelerating or rotating reference frame. It is related to Newton's second law of motion, which tre ...
s (or inertial forces) can be viewed as body forces. Common inertial forces are, *
Centrifugal force In Newtonian mechanics, the centrifugal force is an inertial force (also called a "fictitious" or "pseudo" force) that appears to act on all objects when viewed in a rotating frame of reference. It is directed away from an axis which is parallel ...
, *
Coriolis force In physics, the Coriolis force is an inertial or fictitious force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the ...
, *
Euler force In classical mechanics, the Euler force is the fictitious tangential force that appears when a non-uniformly rotating reference frame is used for analysis of motion and there is variation in the angular velocity of the reference frame's axes. The ...
(or transverse force), which occurs in a rotating reference frame when the rate of rotation of the frame is changing However, fictitious forces are not actually forces. Rather they are corrections to
Newton's second law Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows: # A body remains at rest, or in motion ...
when it is formulated in an accelerating reference frame. (Gravity can also be considered a fictitious force in the context of
General Relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physic ...
.)


Quantitative

The body force density is defined so that the
volume integral In mathematics (particularly multivariable calculus), a volume integral (∭) refers to an integral over a 3-dimensional domain; that is, it is a special case of multiple integrals. Volume integrals are especially important in physics for many a ...
(throughout a volume of interest) of it gives the total force acting throughout the body; :\mathbf_ = \int\limits_\mathbf(\mathbf) \mathrm V \,, where d''V'' is an
infinitesimal In mathematics, an infinitesimal number is a quantity that is closer to zero than any standard real number, but that is not zero. The word ''infinitesimal'' comes from a 17th-century Modern Latin coinage ''infinitesimus'', which originally ref ...
volume element In mathematics, a volume element provides a means for integrating a function with respect to volume in various coordinate systems such as spherical coordinates and cylindrical coordinates. Thus a volume element is an expression of the form :dV = ...
, and f is the ''external body force density field'' acting on the system.


Acceleration

Like any other force, a body force will cause an object to accelerate. For a non-rigid object,
Newton's second law Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows: # A body remains at rest, or in motion ...
applied to a small volume element is :\mathbf (\mathbf)=\rho (\mathbf)\mathbf (\mathbf), where ''ρ''(r) is the
mass density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematical ...
of the substance, ƒ the force density, and a(r) is
acceleration In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by ...
, all at point r.


The case of gravity

In the case of a body in the
gravitational field In physics, a gravitational field is a model used to explain the influences that a massive body extends into the space around itself, producing a force on another massive body. Thus, a gravitational field is used to explain gravitational pheno ...
on a planet surface, a(r) is nearly constant (g) and uniform. Near the Earth :g = 9.81 \frac. In this case simply :\mathbf_ = \int\limits_\rho (\mathbf)\mathbf\mathrm V = \int\limits_\rho (\mathbf)\mathrm V \cdot \mathbf = m \mathbf where ''m'' is the mass of the body.


See also

*
Action at a distance In physics, action at a distance is the concept that an object can be affected without being physically touched (as in mechanical contact) by another object. That is, it is the non-local interaction of objects that are separated in space. Non- ...
*
Fictitious force A fictitious force is a force that appears to act on a mass whose motion is described using a non-inertial frame of reference, such as a linearly accelerating or rotating reference frame. It is related to Newton's second law of motion, which tre ...
*
Force density In fluid mechanics, the force density is the negative gradient of pressure. It has the physical dimensions of force per unit volume. Force density is a vector field representing the flux density of the hydrostatic force within the bulk of a fl ...
*
Non-contact force A non-contact force is a force which acts on an object without coming physically in contact with it. The most familiar non-contact force is gravity, which confers weight. In contrast a contact force is a force which acts on an object coming physica ...
*
Normal force In mechanics, the normal force F_n is the component of a contact force that is perpendicular to the surface that an object contacts, as in Figure 1. In this instance '' normal'' is used in the geometric sense and means perpendicular, as oppo ...
*
Surface force Surface force denoted ''fs'' is the force that acts across an internal or external surface element in a material body. Surface force can be decomposed into two perpendicular components: normal forces and shear forces. A normal force acts norma ...


References

{{DEFAULTSORT:Body Force Force