HOME

TheInfoList



OR:

In the field of stellar evolution, a blue loop is a stage in the life of an evolved star where it changes from a cool star to a hotter one before cooling again. The name derives from the shape of the evolutionary track on a Hertzsprung–Russell diagram which forms a loop towards the blue (i.e. hotter) side of the diagram. Blue loops can occur for
red supergiant Red supergiants (RSGs) are stars with a supergiant luminosity class ( Yerkes class I) of spectral type K or M. They are the largest stars in the universe in terms of volume, although they are not the most massive or luminous. Betelgeuse and Ant ...
s,
red-giant branch The red-giant branch (RGB), sometimes called the first giant branch, is the portion of the giant branch before helium ignition occurs in the course of stellar evolution. It is a stage that follows the main sequence for low- to intermediate-mass sta ...
stars, or asymptotic giant branch stars. Some stars may undergo more than one blue loop. Many pulsating variable stars such as Cepheids are blue loop stars. Stars on the horizontal branch are not generally referred to as on a blue loop even though they are temporarily hotter than on the red giant or asymptotic giant branches. Loops occur far too slowly to be observed for individual stars, but are inferred from theory and from the properties and distribution of stars in the H–R diagram.


Red giants

Most stars on the red-giant branch (RGB) have an inert helium core and remain on the RGB until a helium flash moves them to the horizontal branch. However, stars more massive than about do not have an inert core. They smoothly ignite helium before reaching the
tip of the red-giant branch Tip of the red-giant branch (TRGB) is a primary distance indicator used in astronomy. It uses the luminosity of the brightest red-giant-branch stars in a galaxy as a standard candle to gauge the distance to that galaxy. It has been used in conjun ...
and become hotter while they burn helium in their cores. More massive stars become hotter during this phase and stars from about upwards are generally treated as experiencing a blue loop, which lasts on the order of a million years. This type of blue loop occurs only once in the lifetime of a star.


Asymptotic giant branch

Stars on the asymptotic giant branch (AGB) have largely inert cores of carbon and oxygen, and alternately fuse hydrogen and helium in concentric shells around the core. The onset of helium shell burning causes a
thermal pulse The asymptotic giant branch (AGB) is a region of the Hertzsprung–Russell diagram populated by evolved cool luminous stars. This is a period of stellar evolution undertaken by all low- to intermediate-mass stars (about 0.5 to 8 solar masses) l ...
and in some cases this will cause the star to temporarily increase its
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measurement, measured with a thermometer. Thermometers are calibrated in various Conversion of units of temperature, temp ...
and execute a blue loop. Many thermal pulses may occur as the shells alternately switch on and off, and multiple blue loops can occur in the same star.


Red supergiants

Red supergiants are massive stars that have left the main sequence and greatly expanded and cooled. Their high luminosity and low
surface gravity The surface gravity, ''g'', of an astronomical object is the gravitational acceleration experienced at its surface at the equator, including the effects of rotation. The surface gravity may be thought of as the acceleration due to gravity experien ...
means they are rapidly losing mass. The most luminous red supergiants can lose mass quickly enough that they become hotter and smaller. In the most massive stars, this can result in the star evolving permanently away from the red supergiant stage to become a blue supergiant, but in some cases the star will execute a blue loop and return to being a red supergiant.


Instability strip

Stars which are executing blue loops cross the yellow portion of the H–R diagram above the main sequence, so that many of them cross a region called the instability strip because the outer layers of stars in that region are unstable and pulsate. Stars from the asymptotic giant branch that cross the instability strip during a blue loop are thought to become W Virginis variables. More massive stars, crossing the instability strip during a blue loop from the red-giant branch, are thought to make up the δ Cephei variables. Both types of star have luminous and unstable photospheres at this stage of their lives and often have the spectra of
supergiant Supergiants are among the most massive and most luminous stars. Supergiant stars occupy the top region of the Hertzsprung–Russell diagram with absolute visual magnitudes between about −3 and −8. The temperature range of supergiant stars spa ...
s, although most are not massive enough to ever fuse carbon or reach a supernova.


References

{{Star Stellar evolution Hertzsprung–Russell classifications