In
particle physics
Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) a ...
, a baryon is a type of
composite
Composite or compositing may refer to:
Materials
* Composite material, a material that is made from several different substances
** Metal matrix composite, composed of metal and other parts
** Cermet, a composite of ceramic and metallic materials
...
subatomic particle
In physical sciences, a subatomic particle is a particle that composes an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles (for example, a p ...
which contains an odd number of
valence quark
In particle physics, the quark model is a classification scheme for hadrons in terms of their valence quarks—the quarks and antiquarks which give rise to the quantum numbers of the hadrons. The quark model underlies "flavor SU(3)", or the ...
s (at least 3).
Baryons belong to the
hadron
In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the ele ...
family of particles; hadrons are composed of
quark
A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All comm ...
s. Baryons are also classified as
fermion
In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks an ...
s because they have half-integer
spin.
The name "baryon", introduced by
Abraham Pais
Abraham Pais (; May 19, 1918 – July 28, 2000) was a Dutch- American physicist and science historian. Pais earned his Ph.D. from University of Utrecht just prior to a Nazi ban on Jewish participation in Dutch universities during World War I ...
, comes from the
Greek
Greek may refer to:
Greece
Anything of, from, or related to Greece, a country in Southern Europe:
*Greeks, an ethnic group.
*Greek language, a branch of the Indo-European language family.
**Proto-Greek language, the assumed last common ancestor ...
word for "heavy" (βαρύς, ''barýs''), because, at the time of their naming, most known elementary particles had lower masses than the baryons. Each baryon has a corresponding
antiparticle
In particle physics, every type of particle is associated with an antiparticle with the same mass but with opposite physical charges (such as electric charge). For example, the antiparticle of the electron is the positron (also known as an antie ...
(antibaryon) where their corresponding antiquarks replace quarks. For example, a
proton
A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mas ...
is made of two
up quark
The up quark or u quark (symbol: u) is the lightest of all quarks, a type of elementary particle, and a significant constituent of matter. It, along with the down quark, forms the neutrons (one up quark, two down quarks) and protons (two up ...
s and one
down quark
The down quark or d quark (symbol: d) is the second-lightest of all quarks, a type of elementary particle, and a major constituent of matter. Together with the up quark, it forms the neutrons (one up quark, two down quarks) and protons (tw ...
; and its corresponding antiparticle, the
antiproton
The antiproton, , (pronounced ''p-bar'') is the antiparticle of the proton. Antiprotons are stable, but they are typically short-lived, since any collision with a proton will cause both particles to be annihilated in a burst of energy.
The exi ...
, is made of two up antiquarks and one down antiquark.
Because they are composed of quarks, baryons participate in the
strong interaction
The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called t ...
, which is
mediated by particles known as
gluon
A gluon ( ) is an elementary particle that acts as the exchange particle (or gauge boson) for the strong force between quarks. It is analogous to the exchange of photons in the electromagnetic force between two charged particles. Gluons b ...
s. The most familiar baryons are
proton
A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mas ...
s and
neutron
The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beha ...
s, both of which contain three quarks, and for this reason they are sometimes called ''triquarks''. These particles make up most of the mass of the visible
matter
In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic parti ...
in the
universe
The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the univer ...
and compose the
nucleus of every
atom
Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons.
Every solid, liquid, g ...
. (
Electron
The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family,
and are generally thought to be elementary particles because they have n ...
s, the other major component of the atom, are members of a different family of particles called
lepton
In particle physics, a lepton is an elementary particle of half-integer spin (spin ) that does not undergo strong interactions. Two main classes of leptons exist: charged leptons (also known as the electron-like leptons or muons), and neut ...
s; leptons do not interact via the strong force.)
Exotic baryon
Exotic baryons are a type of hadron (bound states of quarks and gluons) with half-integer spin, but with a quark content different from the three quarks (''qqq'') present in conventional baryons. An example would be pentaquarks, consisting of fo ...
s containing five quarks, called
pentaquark
A pentaquark is a human-made subatomic particle, consisting of four quarks and one antiquark bound together; they are not known to occur naturally, or exist outside of experiments specifically carried out to create them.
As quarks have a ba ...
s, have also been discovered and studied.
A census of the Universe's baryons indicates that 10% of them could be found inside galaxies, 50 to 60% in the
circumgalactic medium, and the remaining 30 to 40% could be located in the
warm–hot intergalactic medium
The warm–hot intergalactic medium (WHIM) is the sparse, warm-to-hot (105 to 107 K) plasma that cosmologists believe to exist in the spaces between galaxies and to contain 40–50% of the baryonic 'normal matter' in the universe at the curre ...
(WHIM).
Background
Baryons are strongly interacting
fermion
In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks an ...
s; that is, they are acted on by the
strong nuclear force
The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called the n ...
and are described by
Fermi–Dirac statistics
Fermi–Dirac statistics (F–D statistics) is a type of quantum statistics that applies to the physics of a system consisting of many non-interacting, identical particles that obey the Pauli exclusion principle. A result is the Fermi–Dirac ...
, which apply to all particles obeying the
Pauli exclusion principle
In quantum mechanics, the Pauli exclusion principle states that two or more identical particles with half-integer spins (i.e. fermions) cannot occupy the same quantum state within a quantum system simultaneously. This principle was formula ...
. This is in contrast to the
boson
In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0,1,2 ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have odd half-integer s ...
s, which do not obey the exclusion principle.
Baryons, along with
meson
In particle physics, a meson ( or ) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subpartic ...
s, are
hadron
In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the ele ...
s, particles composed of
quark
A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All comm ...
s. Quarks have
baryon number
In particle physics, the baryon number is a strictly conserved additive quantum number of a system. It is defined as
::B = \frac\left(n_\text - n_\bar\right),
where ''n''q is the number of quarks, and ''n'' is the number of antiquarks. Baryo ...
s of ''B'' = and antiquarks have baryon numbers of ''B'' = −. The term "baryon" usually refers to ''triquarks''—baryons made of three quarks (''B'' = + + = 1).
Other
exotic baryon
Exotic baryons are a type of hadron (bound states of quarks and gluons) with half-integer spin, but with a quark content different from the three quarks (''qqq'') present in conventional baryons. An example would be pentaquarks, consisting of fo ...
s have been proposed, such as
pentaquark
A pentaquark is a human-made subatomic particle, consisting of four quarks and one antiquark bound together; they are not known to occur naturally, or exist outside of experiments specifically carried out to create them.
As quarks have a ba ...
s—baryons made of four quarks and one antiquark (''B'' = + + + − = 1), but their existence is not generally accepted. The particle physics community as a whole did not view their existence as likely in 2006,
[W.-M. Yao et al. (2006)]
Particle listings – Θ+
/ref> and in 2008, considered evidence to be overwhelmingly against the existence of the reported pentaquarks.[C. Amsler et al. (2008)]
Pentaquarks
/ref> However, in July 2015, the LHCb
The LHCb (Large Hadron Collider beauty) experiment is one of eight particle physics detector experiments collecting data at the Large Hadron Collider at CERN. LHCb is a specialized b-physics experiment, designed primarily to measure the parame ...
experiment observed two resonances consistent with pentaquark states in the Λ → J/ψKp decay, with a combined statistical significance
In statistical hypothesis testing, a result has statistical significance when it is very unlikely to have occurred given the null hypothesis (simply by chance alone). More precisely, a study's defined significance level, denoted by \alpha, is the ...
of 15σ.
In theory, heptaquarks (5 quarks, 2 antiquarks), nonaquarks (6 quarks, 3 antiquarks), etc. could also exist.
Baryonic matter
Nearly all matter that may be encountered or experienced in everyday life is baryonic matter
In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic parti ...
, which includes atom
Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons.
Every solid, liquid, g ...
s of any sort, and provides them with the property of mass. Non-baryonic matter, as implied by the name, is any sort of matter that is not composed primarily of baryons. This might include neutrino
A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest m ...
s and free electron
The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family,
and are generally thought to be elementary particles because they have n ...
s, dark matter
Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not ...
, supersymmetric particles, axion
An axion () is a hypothetical elementary particle postulated by the Peccei–Quinn theory in 1977 to resolve the strong CP problem in quantum chromodynamics (QCD). If axions exist and have low mass within a specific range, they are of inter ...
s, and black hole
A black hole is a region of spacetime where gravity is so strong that nothing, including light or other electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts that a sufficiently compact mass can d ...
s.
The very existence of baryons is also a significant issue in cosmology because it is assumed that the Big Bang produced a state with equal amounts of baryons and antibaryons. The process by which baryons came to outnumber their antiparticle
In particle physics, every type of particle is associated with an antiparticle with the same mass but with opposite physical charges (such as electric charge). For example, the antiparticle of the electron is the positron (also known as an antie ...
s is called baryogenesis
In physical cosmology, baryogenesis (also known as baryosynthesis) is the physical process that is hypothesized to have taken place during the early universe to produce baryonic asymmetry, i.e. the imbalance of matter (baryons) and antimatter ( ...
.
Baryogenesis
Experiments are consistent with the number of quarks in the universe being a constant and, to be more specific, the number of baryons being a constant (if antimatter is counted as negative); in technical language, the total baryon number
In particle physics, the baryon number is a strictly conserved additive quantum number of a system. It is defined as
::B = \frac\left(n_\text - n_\bar\right),
where ''n''q is the number of quarks, and ''n'' is the number of antiquarks. Baryo ...
appears to be '' conserved.'' Within the prevailing Standard Model
The Standard Model of particle physics is the theory describing three of the four known fundamental forces ( electromagnetic, weak and strong interactions - excluding gravity) in the universe and classifying all known elementary particles. It ...
of particle physics, the number of baryons may change in multiples of three due to the action of sphalerons, although this is rare and has not been observed under experiment. Some grand unified theories of particle physics also predict that a single proton
A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mas ...
can decay, changing the baryon number by one; however, this has not yet been observed under experiment. The excess of baryons over antibaryons in the present universe is thought to be due to non- conservation of baryon number in the very early universe, though this is not well understood.
Properties
Isospin and charge
The concept of isospin was first proposed by Werner Heisenberg
Werner Karl Heisenberg () (5 December 1901 – 1 February 1976) was a German theoretical physicist and one of the main pioneers of the theory of quantum mechanics. He published his work in 1925 in a breakthrough paper. In the subsequent seri ...
in 1932 to explain the similarities between protons and neutrons under the strong interaction
The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called t ...
. Although they had different electric charges, their masses were so similar that physicists believed they were the same particle. The different electric charges were explained as being the result of some unknown excitation similar to spin. This unknown excitation was later dubbed ''isospin'' by Eugene Wigner
Eugene Paul "E. P." Wigner ( hu, Wigner Jenő Pál, ; November 17, 1902 – January 1, 1995) was a Hungarian-American theoretical physicist who also contributed to mathematical physics. He received the Nobel Prize in Physics in 1963 "for his co ...
in 1937.
This belief lasted until Murray Gell-Mann
Murray Gell-Mann (; September 15, 1929 – May 24, 2019) was an American physicist who received the 1969 Nobel Prize in Physics for his work on the theory of elementary particles. He was the Robert Andrews Millikan Professor of Theoretica ...
proposed the quark model
In particle physics, the quark model is a classification scheme for hadrons in terms of their valence quarks—the quarks and antiquarks which give rise to the quantum numbers of the hadrons. The quark model underlies "flavor SU(3)", or the ...
in 1964 (containing originally only the u, d, and s quarks). The success of the isospin model is now understood to be the result of the similar masses of u and d quarks. Since u and d quarks have similar masses, particles made of the same number then also have similar masses. The exact specific u and d quark composition determines the charge, as u quarks carry charge + while d quarks carry charge −. For example, the four Deltas
A river delta is a landform shaped like a triangle, created by deposition of sediment that is carried by a river and enters slower-moving or stagnant water. This occurs where a river enters an ocean, sea, estuary, lake, reservoir, or (more rar ...
all have different charges ( (uuu), (uud), (udd), (ddd)), but have similar masses (~1,232 MeV/c2) as they are each made of a combination of three u or d quarks. Under the isospin model, they were considered to be a single particle in different charged states.
The mathematics of isospin was modeled after that of spin. Isospin projections varied in increments of 1 just like those of spin, and to each projection was associated a " charged state". Since the " Delta particle" had four "charged states", it was said to be of isospin ''I'' = . Its "charged states" , , , and , corresponded to the isospin projections ''I''3 = +, ''I''3 = +, ''I''3 = −, and ''I''3 = −, respectively. Another example is the "nucleon particle". As there were two nucleon "charged states", it was said to be of isospin . The positive nucleon (proton) was identified with ''I''3 = + and the neutral nucleon (neutron) with ''I''3 = −.[S.S.M. Wong (1998a)] It was later noted that the isospin projections were related to the up and down quark content of particles by the relation:
:
where the ''ns are the number of up and down quarks and antiquarks.
In the "isospin picture", the four Deltas and the two nucleons were thought to be the different states of two particles. However, in the quark model, Deltas are different states of nucleons (the N++ or N− are forbidden by Pauli's exclusion principle). Isospin, although conveying an inaccurate picture of things, is still used to classify baryons, leading to unnatural and often confusing nomenclature.
Flavour quantum numbers
The strangeness
In particle physics, strangeness ("''S''") is a property of particles, expressed as a quantum number, for describing decay of particles in strong and electromagnetic interactions which occur in a short period of time. The strangeness of a par ...
flavour quantum number ''S'' (not to be confused with spin) was noticed to go up and down along with particle mass. The higher the mass, the lower the strangeness (the more s quarks). Particles could be described with isospin projections (related to charge) and strangeness (mass) (see the uds octet
Octet may refer to:
Music
* Octet (music), ensemble consisting of eight instruments or voices, or composition written for such an ensemble
** String octet, a piece of music written for eight string instruments
*** Octet (Mendelssohn), 1825 com ...
and decuplet figures on the right). As other quarks were discovered, new quantum numbers were made to have similar description of udc and udb octets and decuplets. Since only the u and d mass are similar, this description of particle mass and charge in terms of isospin and flavour quantum numbers works well only for octet and decuplet made of one u, one d, and one other quark, and breaks down for the other octets and decuplets (for example, ucb octet and decuplet). If the quarks all had the same mass, their behaviour would be called ''symmetric'', as they would all behave in the same way to the strong interaction. Since quarks do not have the same mass, they do not interact in the same way (exactly like an electron placed in an electric field will accelerate more than a proton placed in the same field because of its lighter mass), and the symmetry is said to be broken.
It was noted that charge (''Q'') was related to the isospin projection (''I''3), the baryon number
In particle physics, the baryon number is a strictly conserved additive quantum number of a system. It is defined as
::B = \frac\left(n_\text - n_\bar\right),
where ''n''q is the number of quarks, and ''n'' is the number of antiquarks. Baryo ...
(''B'') and flavour quantum numbers (''S'', ''C'', ''B''′, ''T'') by the Gell-Mann–Nishijima formula:
:
where ''S'', ''C'', ''B''′, and ''T'' represent the strangeness
In particle physics, strangeness ("''S''") is a property of particles, expressed as a quantum number, for describing decay of particles in strong and electromagnetic interactions which occur in a short period of time. The strangeness of a par ...
, charm
Charm may refer to:
Social science
* Charisma, a person or thing's pronounced ability to attract others
* Superficial charm, flattery, telling people what they want to hear
Science and technology
* Charm quark, a type of elementary particle
* ...
, bottomness
In physics, bottomness (symbol ''B''′ using a prime as plain ''B'' is used already for baryon number) or beauty is a flavour quantum number reflecting the difference between the number of bottom antiquarks (''n'') and the number of bottom ...
and topness
Topness (''T'', also called truth), a flavour quantum number, represents the difference between the number of top quarks (t) and number of top antiquarks () that are present in a particle:
:T = n_\text - n_\bar
By convention, top quarks have ...
flavour quantum numbers, respectively. They are related to the number of strange, charm, bottom, and top quarks and antiquark according to the relations:
:
meaning that the Gell-Mann–Nishijima formula is equivalent to the expression of charge in terms of quark content:
:
Spin, orbital angular momentum, and total angular momentum
Spin (quantum number ''S'') is a vector
Vector most often refers to:
* Euclidean vector, a quantity with a magnitude and a direction
* Vector (epidemiology), an agent that carries and transmits an infectious pathogen into another living organism
Vector may also refer to:
Mathemat ...
quantity that represents the "intrinsic" angular momentum
In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed sy ...
of a particle. It comes in increments of ħ (pronounced "h-bar"). The ħ is often dropped because it is the "fundamental" unit of spin, and it is implied that "spin 1" means "spin 1 ħ". In some systems of natural units
In physics, natural units are physical units of measurement in which only universal physical constants are used as defining constants, such that each of these constants acts as a coherent unit of a quantity. For example, the elementary charge ...
, ħ is chosen to be 1, and therefore does not appear anywhere.
Quark
A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All comm ...
s are fermion
In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks an ...
ic particles of spin (''S'' = ). Because spin projections vary in increments of 1 (that is 1 ħ), a single quark has a spin vector of length , and has two spin projections (''S''z = + and ''S''z = −). Two quarks can have their spins aligned, in which case the two spin vectors add to make a vector of length ''S'' = 1 and three spin projections (''S''z = +1, ''S''z = 0, and ''S''z = −1). If two quarks have unaligned spins, the spin vectors add up to make a vector of length ''S'' = 0 and has only one spin projection (''S''z = 0), etc. Since baryons are made of three quarks, their spin vectors can add to make a vector of length ''S'' = , which has four spin projections (''S''z = +, ''S''z = +, ''S''z = −, and ''S''z = −), or a vector of length ''S'' = with two spin projections (''S''z = +, and ''S''z = −).[R. Shankar (1994)]
There is another quantity of angular momentum, called the orbital angular momentum (azimuthal quantum number
The azimuthal quantum number is a quantum number for an atomic orbital that determines its orbital angular momentum and describes the shape of the orbital. The azimuthal quantum number is the second of a set of quantum numbers that describe ...
''L''), that comes in increments of 1 ħ, which represent the angular moment due to quarks orbiting around each other. The total angular momentum
In quantum mechanics, the total angular momentum quantum number parametrises the total angular momentum of a given particle, by combining its orbital angular momentum and its intrinsic angular momentum (i.e., its spin).
If s is the particle's sp ...
( total angular momentum quantum number ''J'') of a particle is therefore the combination of intrinsic angular momentum (spin) and orbital angular momentum. It can take any value from to , in increments of 1.
Particle physicists are most interested in baryons with no orbital angular momentum (''L'' = 0), as they correspond to ground state
The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state ...
s—states of minimal energy. Therefore, the two groups of baryons most studied are the ''S'' = ; ''L'' = 0 and ''S'' = ; ''L'' = 0, which corresponds to ''J'' = + and ''J'' = +, respectively, although they are not the only ones. It is also possible to obtain ''J'' = + particles from ''S'' = and ''L'' = 2, as well as ''S'' = and ''L'' = 2. This phenomenon of having multiple particles in the same total angular momentum configuration is called '' degeneracy''. How to distinguish between these degenerate baryons is an active area of research in baryon spectroscopy.[D.M. Manley (2005)]
Parity
If the universe were reflected in a mirror, most of the laws of physics would be identical—things would behave the same way regardless of what we call "left" and what we call "right". This concept of mirror reflection is called "intrinsic parity
In quantum mechanics, the intrinsic parity is a phase factor that arises as an eigenvalue of the parity operation x_i \rightarrow x_i' = -x_i (a reflection about the origin). To see that the parity's eigenvalues are phase factors, we assume an ...
" or simply "parity" (''P''). Gravity
In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the str ...
, the electromagnetic force
In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions o ...
, and the strong interaction
The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called t ...
all behave in the same way regardless of whether or not the universe is reflected in a mirror, and thus are said to conserve parity (P-symmetry). However, the weak interaction
In nuclear physics and particle physics, the weak interaction, which is also often called the weak force or weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction ...
does distinguish "left" from "right", a phenomenon called parity violation
In physics, a parity transformation (also called parity inversion) is the flip in the sign of ''one'' spatial coordinate. In three dimensions, it can also refer to the simultaneous flip in the sign of all three spatial coordinates (a point ref ...
(P-violation).
Based on this, if the wavefunction
A wave function in quantum physics is a mathematical description of the quantum state of an isolated quantum system. The wave function is a complex-valued probability amplitude, and the probabilities for the possible results of measurements ...
for each particle (in more precise terms, the quantum field
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles ...
for each particle type) were simultaneously mirror-reversed, then the new set of wavefunctions would perfectly satisfy the laws of physics (apart from the weak interaction). It turns out that this is not quite true: for the equations to be satisfied, the wavefunctions of certain types of particles have to be multiplied by −1, in addition to being mirror-reversed. Such particle types are said to have negative or odd parity (''P'' = −1, or alternatively ''P'' = –), while the other particles are said to have positive or even parity (''P'' = +1, or alternatively ''P'' = +).
For baryons, the parity is related to the orbital angular momentum by the relation:[S.S.M. Wong (1998b)]
:
As a consequence, baryons with no orbital angular momentum (''L'' = 0) all have even parity (''P'' = +).
Nomenclature
Baryons are classified into groups according to their isospin
In nuclear physics and particle physics, isospin (''I'') is a quantum number related to the up- and down quark content of the particle. More specifically, isospin symmetry is a subset of the flavour symmetry seen more broadly in the interactions ...
(''I'') values and quark
A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All comm ...
(''q'') content. There are six groups of baryons: nucleon
In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number (nucleon number).
Until the 1960s, nucleons we ...
(), Delta
Delta commonly refers to:
* Delta (letter) (Δ or δ), a letter of the Greek alphabet
* River delta, at a river mouth
* D (NATO phonetic alphabet: "Delta")
* Delta Air Lines, US
* Delta variant of SARS-CoV-2 that causes COVID-19
Delta may also ...
(), Lambda
Lambda (}, ''lám(b)da'') is the 11th letter of the Greek alphabet, representing the voiced alveolar lateral approximant . In the system of Greek numerals, lambda has a value of 30. Lambda is derived from the Phoenician Lamed . Lambda gave ri ...
(), Sigma
Sigma (; uppercase Σ, lowercase σ, lowercase in word-final position ς; grc-gre, σίγμα) is the eighteenth letter of the Greek alphabet. In the system of Greek numerals, it has a value of 200. In general mathematics, uppercase Σ is used as ...
(), Xi (), and Omega
Omega (; capital: Ω, lowercase: ω; Ancient Greek ὦ, later ὦ μέγα, Modern Greek ωμέγα) is the twenty-fourth and final letter in the Greek alphabet. In the Greek numeric system/ isopsephy ( gematria), it has a value of 800. T ...
(). The rules for classification are defined by the Particle Data Group The Particle Data Group (or PDG) is an international collaboration of particle physicists that compiles and reanalyzes published results related to the properties of particles and fundamental interactions. It also publishes reviews of theoretical ...
. These rules consider the up (), down () and strange
Strange may refer to:
Fiction
* Strange (comic book), a comic book limited series by Marvel Comics
* Strange (Marvel Comics), one of a pair of Marvel Comics characters known as The Strangers
* Adam Strange, a DC Comics superhero
* The title c ...
() quarks to be ''light'' and the charm
Charm may refer to:
Social science
* Charisma, a person or thing's pronounced ability to attract others
* Superficial charm, flattery, telling people what they want to hear
Science and technology
* Charm quark, a type of elementary particle
* ...
(), bottom (), and top () quarks to be ''heavy''. The rules cover all the particles that can be made from three of each of the six quarks, even though baryons made of top quarks are not expected to exist because of the top quark
The top quark, sometimes also referred to as the truth quark, (symbol: t) is the most massive of all observed elementary particles. It derives its mass from its coupling to the Higgs Boson. This coupling y_ is very close to unity; in the Stand ...
's short lifetime. The rules do not cover pentaquarks.[C. Amsler et al. (2008)]
Naming scheme for hadrons
/ref>
* Baryons with (any combination of) three and/or quarks are s (''I'' = ) or baryons (''I'' = ).
* Baryons containing two and/or quarks are baryons (''I'' = 0) or baryons (''I'' = 1). If the third quark is heavy, its identity is given by a subscript.
* Baryons containing one or quark are baryons (''I'' = ). One or two subscripts are used if one or both of the remaining quarks are heavy.
* Baryons containing no or quarks are baryons (''I'' = 0), and subscripts indicate any heavy quark content.
* Baryons that decay strongly have their masses as part of their names. For example, Σ0 does not decay strongly, but Δ++(1232) does.
It is also a widespread (but not universal) practice to follow some additional rules when distinguishing between some states that would otherwise have the same symbol.
* Baryons in total angular momentum
In quantum mechanics, the total angular momentum quantum number parametrises the total angular momentum of a given particle, by combining its orbital angular momentum and its intrinsic angular momentum (i.e., its spin).
If s is the particle's sp ...
''J'' = configuration that have the same symbols as their ''J'' = counterparts are denoted by an asterisk ( * ).
* Two baryons can be made of three different quarks in ''J'' = configuration. In this case, a prime ( ′ ) is used to distinguish between them.
** ''Exception'': When two of the three quarks are one up and one down quark, one baryon is dubbed Λ while the other is dubbed Σ.
Quarks carry a charge, so knowing the charge of a particle indirectly gives the quark content. For example, the rules above say that a contains a c quark and some combination of two u and/or d quarks. The c quark has a charge of (''Q'' = +), therefore the other two must be a u quark (''Q'' = +), and a d quark (''Q'' = −) to have the correct total charge (''Q'' = +1).
See also
* Eightfold way
* List of baryons
* Meson
In particle physics, a meson ( or ) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subpartic ...
* Timeline of particle discoveries
Citations
General references
*
*
*
*
*
*
*
*
*
*
*
*
*
*
External links
* Particle Data Group
Review of Particle Physics (2018).
* Georgia State University
Baryons made thinkable
an interactive visualisation allowing physical properties to be compared
{{Authority control