HOME

TheInfoList



OR:

Background radiation is a measure of the level of ionizing radiation present in the environment at a particular location which is not due to deliberate introduction of radiation sources. Background radiation originates from a variety of sources, both natural and artificial. These include both cosmic radiation and environmental radioactivity from
naturally occurring radioactive material Naturally occurring radioactive materials (NORM) and technologically enhanced naturally occurring radioactive materials (TENORM) consist of materials, usually industrial wastes or by-products enriched with radioactive elements found in the envir ...
s (such as
radon Radon is a chemical element with the symbol Rn and atomic number 86. It is a radioactive, colourless, odourless, tasteless noble gas. It occurs naturally in minute quantities as an intermediate step in the normal radioactive decay chains through ...
and
radium Radium is a chemical element with the symbol Ra and atomic number 88. It is the sixth element in group 2 of the periodic table, also known as the alkaline earth metals. Pure radium is silvery-white, but it readily reacts with nitrogen (rathe ...
), as well as man-made medical X-rays,
fallout Nuclear fallout is the residual radioactive material propelled into the upper atmosphere following a nuclear blast, so called because it "falls out" of the sky after the explosion and the shock wave has passed. It commonly refers to the radioac ...
from
nuclear weapons testing Nuclear weapons tests are experiments carried out to determine nuclear weapons' effectiveness, yield, and explosive capability. Testing nuclear weapons offers practical information about how the weapons function, how detonations are affected by ...
and nuclear accidents.


Definition

Background radiation is defined by the International Atomic Energy Agency as "Dose or dose rate (or an observed measure related to the dose or dose rate) attributable to all sources other than the one(s) specified. So a distinction is made between dose which is already in a location, which is defined here as being "background", and the dose due to a deliberately introduced and specified source. This is important where radiation measurements are taken of a specified radiation source, where the existing background may affect this measurement. An example would be measurement of radioactive contamination in a gamma radiation background, which could increase the total reading above that expected from the contamination alone. However, if no radiation source is specified as being of concern, then the total radiation dose measurement at a location is generally called the background radiation, and this is usually the case where an ambient dose rate is measured for environmental purposes.


Background dose rate examples

Background radiation varies with location and time, and the following table gives examples:


Natural background radiation

Radioactive material is found throughout nature. Detectable amounts occur naturally in
soil Soil, also commonly referred to as earth or dirt Dirt is an unclean matter, especially when in contact with a person's clothes, skin, or possessions. In such cases, they are said to become dirty. Common types of dirt include: * Debri ...
, rocks, water, air, and vegetation, from which it is inhaled and ingested into the body. In addition to this ''internal exposure'', humans also receive ''external exposure'' from radioactive materials that remain outside the body and from cosmic radiation from space. The worldwide average natural dose to humans is about per year. This is four times the worldwide average artificial radiation exposure, which in 2008 amounted to about per year. In some developed countries, like the US and Japan, artificial exposure is, on average, greater than the natural exposure, due to greater access to medical imaging. In Europe, average natural background exposure by country ranges from under annually in the United Kingdom to more than annually for some groups of people in Finland. The International Atomic Energy Agency states: :"Exposure to radiation from natural sources is an inescapable feature of everyday life in both working and public environments. This exposure is in most cases of little or no concern to society, but in certain situations the introduction of health protection measures needs to be considered, for example when working with uranium and thorium ores and other Naturally Occurring Radioactive Material ( NORM). These situations have become the focus of greater attention by the Agency in recent years."


Terrestrial sources

Terrestrial radiation, for the purpose of the table above, only includes sources that remain external to the body. The major radionuclides of concern are
potassium Potassium is the chemical element with the symbol K (from Neo-Latin ''kalium'') and atomic number19. Potassium is a silvery-white metal that is soft enough to be cut with a knife with little force. Potassium metal reacts rapidly with atmosph ...
,
uranium Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weak ...
and
thorium Thorium is a weakly radioactive metallic chemical element with the symbol Th and atomic number 90. Thorium is silvery and tarnishes black when it is exposed to air, forming thorium dioxide; it is moderately soft and malleable and has a high ...
and their decay products, some of which, like
radium Radium is a chemical element with the symbol Ra and atomic number 88. It is the sixth element in group 2 of the periodic table, also known as the alkaline earth metals. Pure radium is silvery-white, but it readily reacts with nitrogen (rathe ...
and
radon Radon is a chemical element with the symbol Rn and atomic number 86. It is a radioactive, colourless, odourless, tasteless noble gas. It occurs naturally in minute quantities as an intermediate step in the normal radioactive decay chains through ...
are intensely radioactive but occur in low concentrations. Most of these sources have been decreasing, due to radioactive decay since the formation of the Earth, because there is no significant amount currently transported to the Earth. Thus, the present activity on earth from uranium-238 is only half as much as it originally was because of its 4.5
billion Billion is a word for a large number, and it has two distinct definitions: *1,000,000,000, i.e. one thousand million, or (ten to the ninth power), as defined on the short scale. This is its only current meaning in English. * 1,000,000,000,000, i. ...
year half-life, and
potassium-40 Potassium-40 (40K) is a radioactive isotope of potassium which has a long half-life of 1.25 billion years. It makes up about 0.012% (120 ppm) of the total amount of potassium found in nature. Potassium-40 undergoes three types of radioactive d ...
(half-life 1.25 billion years) is only at about 8% of original activity. But during the time that humans have existed the amount of radiation has decreased very little. Many shorter half-life (and thus more intensely radioactive) isotopes have not decayed out of the terrestrial environment because of their on-going natural production. Examples of these are
radium Radium is a chemical element with the symbol Ra and atomic number 88. It is the sixth element in group 2 of the periodic table, also known as the alkaline earth metals. Pure radium is silvery-white, but it readily reacts with nitrogen (rathe ...
-226 (decay product of thorium-230 in decay chain of uranium-238) and radon-222 (a decay product of
radium Radium is a chemical element with the symbol Ra and atomic number 88. It is the sixth element in group 2 of the periodic table, also known as the alkaline earth metals. Pure radium is silvery-white, but it readily reacts with nitrogen (rathe ...
-226 in said chain). Thorium and uranium (and their daughters) primarily undergo alpha and
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For ...
, and aren't easily detectable. However, many of their
daughter product In nuclear physics, a decay product (also known as a daughter product, daughter isotope, radio-daughter, or daughter nuclide) is the remaining nuclide left over from radioactive decay. Radioactive decay often proceeds via a sequence of steps (de ...
s are strong gamma emitters. Thorium-232 is detectable via a 239 keV peak from lead-212, 511, 583 and 2614 keV from thallium-208, and 911 and 969 keV from
actinium-228 Actinium (89Ac) has no stable isotopes and no characteristic terrestrial isotopic composition, thus a standard atomic weight cannot be given. There are 33 known isotopes, from 204Ac to 236Ac, and 7 isomers. Three isotopes are found in nature, 225 ...
. Uranium-238 manifests as 609, 1120, and 1764 keV peaks of bismuth-214 (''cf.'' the same peak for atmospheric radon). Potassium-40 is detectable directly via its 1461 keV gamma peak. The level over the sea and other large bodies of water tends to be about a tenth of the terrestrial background. Conversely, coastal areas (and areas by the side of fresh water) may have an additional contribution from dispersed sediment.


Airborne sources

The biggest source of natural background radiation is airborne
radon Radon is a chemical element with the symbol Rn and atomic number 86. It is a radioactive, colourless, odourless, tasteless noble gas. It occurs naturally in minute quantities as an intermediate step in the normal radioactive decay chains through ...
, a radioactive gas that emanates from the ground. Radon and its
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numb ...
s, parent radionuclides, and decay products all contribute to an average inhaled dose of 1.26  mSv/a (millisievert per year). Radon is unevenly distributed and varies with weather, such that much higher doses apply to many areas of the world, where it represents a significant health hazard. Concentrations over 500 times the world average have been found inside buildings in Scandinavia, the United States, Iran, and the Czech Republic. Radon is a decay product of uranium, which is relatively common in the Earth's crust, but more concentrated in ore-bearing rocks scattered around the world. Radon seeps out of these ores into the atmosphere or into ground water or infiltrates into buildings. It can be inhaled into the lungs, along with its decay products, where they will reside for a period of time after exposure. Although radon is naturally occurring, exposure can be enhanced or diminished by human activity, notably house construction. A poorly sealed dwelling floor, or poor basement ventilation, in an otherwise well insulated house can result in the accumulation of radon within the dwelling, exposing its residents to high concentrations. The widespread construction of well insulated and sealed homes in the northern industrialized world has led to radon becoming the primary source of background radiation in some localities in northern North America and Europe. Basement sealing and suction ventilation reduce exposure. Some building materials, for example
lightweight concrete Autoclaved aerated concrete (AAC) is a lightweight, precast, foam concrete building material suitable for producing concrete masonry unit like blocks. Composed of quartz sand (SiO2 with impurities), calcined calcium sulfate (CaSO4, a.k.a ...
with alum shale,
phosphogypsum Phosphogypsum (PG) is the calcium sulfate hydrate formed as a by-product of the production of fertilizer from phosphate rock. It is mainly composed of gypsum (CaSO4·2H2O). Although gypsum is a widely used material in the construction industry, p ...
and Italian
tuff Tuff is a type of rock made of volcanic ash ejected from a vent during a volcanic eruption. Following ejection and deposition, the ash is lithified into a solid rock. Rock that contains greater than 75% ash is considered tuff, while rock ...
, may emanate radon if they contain
radium Radium is a chemical element with the symbol Ra and atomic number 88. It is the sixth element in group 2 of the periodic table, also known as the alkaline earth metals. Pure radium is silvery-white, but it readily reacts with nitrogen (rathe ...
and are porous to gas. Radiation exposure from radon is indirect. Radon has a short half-life (4 days) and decays into other solid particulate radium-series radioactive nuclides. These radioactive particles are inhaled and remain lodged in the lungs, causing continued exposure. Radon is thus assumed to be the second leading cause of
lung cancer Lung cancer, also known as lung carcinoma (since about 98–99% of all lung cancers are carcinomas), is a malignant lung tumor characterized by uncontrolled cell growth in tissues of the lung. Lung carcinomas derive from transformed, malign ...
after smoking, and accounts for 15,000 to 22,000 cancer deaths per year in the US alone. However, the discussion about the opposite experimental results is still going on. About 100,000 Bq/m3 of radon was found in Stanley Watras's basement in 1984. He and his neighbours in Boyertown, Pennsylvania, United States may hold the record for the most radioactive dwellings in the world. International radiation protection organizations estimate that a
committed dose The committed dose in radiological protection is a measure of the stochastic health risk due to an intake of radioactive material into the human body. Stochastic in this context is defined as the ''probability'' of cancer induction and genetic dam ...
may be calculated by multiplying the equilibrium equivalent concentration (EEC) of radon by a factor of 8 to 9 and the EEC of
thoron There are 37 known isotopes of radon (86Rn), from 195Rn to 231Rn; all are radioactive. The most stable isotope is 222Rn with a half-life of 3.823 days, which decays into . Five isotopes of radon, 217, 218, 219, 220, 222Rn occur in trace quantiti ...
by a factor of 40 . Most of the atmospheric background is caused by radon and its decay products. The gamma spectrum shows prominent peaks at 609, 1120, and 1764 
keV Kev can refer to: Given name * Kev Adams, French comedian, actor, screenwriter and film producer born Kevin Smadja in 1991 * Kevin Kev Carmody (born 1946), Indigenous Australian singer-songwriter * Kev Coghlan (born 1988), Scottish Grand Prix moto ...
, belonging to bismuth-214, a radon decay product. The atmospheric background varies greatly with wind direction and meteorological conditions. Radon also can be released from the ground in bursts and then form "radon clouds" capable of traveling tens of kilometers.Gary W. Philips, David J. Nagel, Timothy Coffey �
A Primer on the Detection of Nuclear and Radiological Weapons
Center for Technology and National Security Policy, National Defense University, May 2005


Cosmic radiation

The Earth and all living things on it are constantly bombarded by radiation from outer space. This radiation primarily consists of positively charged ions from protons to
iron Iron () is a chemical element with Symbol (chemistry), symbol Fe (from la, Wikt:ferrum, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 element, group 8 of the periodic table. It is, Abundanc ...
and larger nuclei derived from outside the
Solar System The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
. This radiation interacts with atoms in the atmosphere to create an air shower of secondary radiation, including
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
s, muons, protons,
alpha particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be pr ...
s,
pion In particle physics, a pion (or a pi meson, denoted with the Greek letter pi: ) is any of three subatomic particles: , , and . Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more gene ...
s,
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
s, and
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s. The immediate dose from cosmic radiation is largely from muons, neutrons, and electrons, and this dose varies in different parts of the world based largely on the geomagnetic field and altitude. For example, the city of
Denver Denver () is a consolidated city and county, the capital, and most populous city of the U.S. state of Colorado. Its population was 715,522 at the 2020 census, a 19.22% increase since 2010. It is the 19th-most populous city in the Unit ...
in the United States (at 1650 meters elevation) receives a cosmic ray dose roughly twice that of a location at sea level. This radiation is much more intense in the upper
troposphere The troposphere is the first and lowest layer of the atmosphere of the Earth, and contains 75% of the total mass of the planetary atmosphere, 99% of the total mass of water vapour and aerosols, and is where most weather phenomena occur. From ...
, around 10 km altitude, and is thus of particular concern for
airline An airline is a company that provides air transport services for traveling passengers and freight. Airlines use aircraft to supply these services and may form partnerships or alliances with other airlines for codeshare agreements, in wh ...
crews and frequent passengers, who spend many hours per year in this environment. During their flights airline crews typically get an additional occupational dose between per year and 2.19 mSv/year, according to various studies. Similarly, cosmic rays cause higher background exposure in astronauts than in humans on the surface of Earth. Astronauts in low
orbit In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as ...
s, such as in the
International Space Station The International Space Station (ISS) is the largest modular space station currently in low Earth orbit. It is a multinational collaborative project involving five participating space agencies: NASA (United States), Roscosmos (Russia), JAXA ( ...
or the
Space Shuttle The Space Shuttle is a retired, partially reusable low Earth orbital spacecraft system operated from 1981 to 2011 by the U.S. National Aeronautics and Space Administration (NASA) as part of the Space Shuttle program. Its official program ...
, are partially shielded by the magnetic field of the Earth, but also suffer from the Van Allen radiation belt which accumulates cosmic rays and results from the Earth's magnetic field. Outside low Earth orbit, as experienced by the
Apollo Apollo, grc, Ἀπόλλωνος, Apóllōnos, label=genitive , ; , grc-dor, Ἀπέλλων, Apéllōn, ; grc, Ἀπείλων, Apeílōn, label= Arcadocypriot Greek, ; grc-aeo, Ἄπλουν, Áploun, la, Apollō, la, Apollinis, label ...
astronauts who traveled to the
Moon The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width of ...
, this background radiation is much more intense, and represents a considerable obstacle to potential future long term human exploration of the
moon The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width of ...
or
Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury. In the English language, Mars is named for the Roman god of war. Mars is a terrestrial planet with a thin at ...
. Cosmic rays also cause elemental transmutation in the atmosphere, in which secondary radiation generated by the cosmic rays combines with atomic nuclei in the atmosphere to generate different nuclides. Many so-called
cosmogenic nuclide Cosmogenic nuclides (or cosmogenic isotopes) are rare nuclides (isotopes) created when a high-energy cosmic ray interacts with the nucleus of an '' in situ'' Solar System atom, causing nucleons (protons and neutrons) to be expelled from the atom ...
s can be produced, but probably the most notable is carbon-14, which is produced by interactions with
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
atoms. These cosmogenic nuclides eventually reach the Earth's surface and can be incorporated into living organisms. The production of these nuclides varies slightly with short-term variations in solar cosmic ray flux, but is considered practically constant over long scales of thousands to millions of years. The constant production, incorporation into organisms and relatively short
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable at ...
of carbon-14 are the principles used in radiocarbon dating of ancient biological materials, such as wooden artifacts or human remains. The cosmic radiation at sea level usually manifests as 511 keV gamma rays from annihilation of positrons created by nuclear reactions of high energy particles and gamma rays. At higher altitudes there is also the contribution of continuous
bremsstrahlung ''Bremsstrahlung'' (), from "to brake" and "radiation"; i.e., "braking radiation" or "deceleration radiation", is electromagnetic radiation produced by the deceleration of a charged particle when deflected by another charged particle, typicall ...
spectrum.


Food and water

Two of the essential elements that make up the human body, namely potassium and carbon, have radioactive isotopes that add significantly to our background radiation dose. An average human contains about 17 milligrams of
potassium-40 Potassium-40 (40K) is a radioactive isotope of potassium which has a long half-life of 1.25 billion years. It makes up about 0.012% (120 ppm) of the total amount of potassium found in nature. Potassium-40 undergoes three types of radioactive d ...
(40K) and about 24 nanograms (10−9 g) of carbon-14 (14C), (half-life 5,730 years). Excluding internal contamination by external radioactive material, these two are the largest components of internal radiation exposure from biologically functional components of the human body. About 4,000 nuclei of 40K decay per second, and a similar number of 14C. The energy of beta particles produced by 40K is about 10 times that from the beta particles from 14C decay. 14C is present in the human body at a level of about 3700 Bq (0.1 μCi) with a
biological half-life Biological half-life (also known as elimination half-life, pharmacologic half-life) is the time taken for concentration of a biological substance (such as a medication) to decrease from its maximum concentration ( Cmax) to half of Cmax in the bl ...
of 40 days. This means there are about 3700 beta particles per second produced by the decay of 14C. However, a 14C atom is in the genetic information of about half the cells, while potassium is not a component of DNA. The decay of a 14C atom inside DNA in one person happens about 50 times per second, changing a carbon atom to one of
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
. The global average internal dose from radionuclides other than radon and its decay products is 0.29 mSv/a, of which 0.17 mSv/a comes from 40K, 0.12 mSv/a comes from the uranium and thorium series, and 12 μSv/a comes from 14C.


Areas with high natural background radiation

Some areas have greater dosage than the country-wide averages. In the world in general, exceptionally high natural background locales include Ramsar in Iran,
Guarapari Guarapari is a coastal town of Espírito Santo, Brazil, a popular tourist destination. Its beach is famous for the high natural radioactivity level of its sand. Location Guarapari is a part of Greater Vitoria, 47 km south of the state capital ...
in Brazil,
Karunagappalli Karunagappally is a municipality in the Kollam district of Kerala, India. It is 24 km north of Kollam and south of Alappuzha. Karunagappally taluk consists of Alappad, Ochira, Adinad, Karunagappally, Thazhava, Pavumba, Thodiyoor, Kall ...
in India,
Arkaroola Arkaroola is the common name for the ''Arkaroola Wilderness Sanctuary'', a wildlife sanctuary situated on of freehold and pastoral lease land in South Australia. It is located north of the Adelaide city centre in the Northern Flinders Range ...
in Australia and Yangjiang in China. The highest level of purely natural radiation ever recorded on the Earth's surface was 90 µGy/h on a Brazilian black beach (''areia preta'' in Portuguese) composed of
monazite Monazite is a primarily reddish-brown phosphate mineral that contains rare-earth elements. Due to variability in composition, monazite is considered a group of minerals. The most common species of the group is monazite-(Ce), that is, the ceriu ...
. This rate would convert to 0.8 Gy/a for year-round continuous exposure, but in fact the levels vary seasonally and are much lower in the nearest residences. The record measurement has not been duplicated and is omitted from UNSCEAR's latest reports. Nearby tourist beaches in
Guarapari Guarapari is a coastal town of Espírito Santo, Brazil, a popular tourist destination. Its beach is famous for the high natural radioactivity level of its sand. Location Guarapari is a part of Greater Vitoria, 47 km south of the state capital ...
and Cumuruxatiba were later evaluated at 14 and 15 µGy/h. Note that the values quoted here are in Grays. To convert to Sieverts (Sv) a radiation weighting factor is required; these weighting factors vary from 1 (beta & gamma) to 20 (alpha particles). The highest background radiation in an inhabited area is found in Ramsar, primarily due to the use of local naturally radioactive limestone as a building material. The 1000 most exposed residents receive an average external
effective radiation dose Effective dose is a dose quantity in the International Commission on Radiological Protection (ICRP) system of radiological protection.ICRP publication, 103 para 103 It is the tissue-weighted sum of the equivalent doses in all specified tissues and ...
of per year, six times the ICRP recommended limit for exposure to the public from artificial sources. They additionally receive a substantial internal dose from radon. Record radiation levels were found in a house where the effective dose due to ambient radiation fields was per year, and the internal
committed dose The committed dose in radiological protection is a measure of the stochastic health risk due to an intake of radioactive material into the human body. Stochastic in this context is defined as the ''probability'' of cancer induction and genetic dam ...
from
radon Radon is a chemical element with the symbol Rn and atomic number 86. It is a radioactive, colourless, odourless, tasteless noble gas. It occurs naturally in minute quantities as an intermediate step in the normal radioactive decay chains through ...
was per year. This unique case is over 80 times higher than the world average natural human exposure to radiation. Epidemiological studies are underway to identify health effects associated with the high radiation levels in Ramsar. It is much too early to draw unambiguous statistically significant conclusions. While so far support for beneficial effects of chronic radiation (like longer lifespan) has been observed in few places only, a protective and adaptive effect is suggested by at least one study whose authors nonetheless caution that data from Ramsar are not yet sufficiently strong to relax existing regulatory dose limits. However, the recent statistical analyses discussed that there is no correlation between the risk of negative health effects and elevated level of natural background radiation.


Photoelectric

Background radiation doses in the immediate vicinity of particles of high atomic number materials, within the human body, have a small enhancement due to the
photoelectric effect The photoelectric effect is the emission of electrons when electromagnetic radiation, such as light, hits a material. Electrons emitted in this manner are called photoelectrons. The phenomenon is studied in condensed matter physics, and solid sta ...
.


Neutron background

Most of the natural neutron background is a product of cosmic rays interacting with the atmosphere. The neutron energy peaks at around 1 MeV and rapidly drops above. At sea level, the production of neutrons is about 20 neutrons per second per kilogram of material interacting with the cosmic rays (or, about 100–300 neutrons per square meter per second). The flux is dependent on geomagnetic latitude, with a maximum near the magnetic poles. At solar minimums, due to lower solar magnetic field shielding, the flux is about twice as high vs the solar maximum. It also dramatically increases during solar flares. In the vicinity of larger heavier objects, e.g. buildings or ships, the neutron flux measures higher; this is known as "cosmic ray induced neutron signature", or "ship effect" as it was first detected with ships at sea.


Artificial background radiation


Atmospheric nuclear testing

Frequent above-ground nuclear explosions between the 1940s and 1960s scattered a substantial amount of
radioactive contamination Radioactive contamination, also called radiological pollution, is the deposition of, or presence of radioactive substances on surfaces or within solids, liquids, or gases (including the human body), where their presence is unintended or undesirab ...
. Some of this contamination is local, rendering the immediate surroundings highly radioactive, while some of it is carried longer distances as
nuclear fallout Nuclear fallout is the residual radioactive material propelled into the upper atmosphere following a nuclear blast, so called because it "falls out" of the sky after the explosion and the shock wave has passed. It commonly refers to the radioac ...
; some of this material is dispersed worldwide. The increase in background radiation due to these tests peaked in 1963 at about 0.15 mSv per year worldwide, or about 7% of average background dose from all sources. The
Limited Test Ban Treaty The Partial Test Ban Treaty (PTBT) is the abbreviated name of the 1963 Treaty Banning Nuclear Weapon Tests in the Atmosphere, in Outer Space and Under Water, which prohibited all test detonations of nuclear weapons except for those conducted ...
of 1963 prohibited above-ground tests, thus by the year 2000 the worldwide dose from these tests has decreased to only 0.005 mSv per year.


Occupational exposure

The
International Commission on Radiological Protection The International Commission on Radiological Protection (ICRP) is an independent, international, non-governmental organization, with the mission to protect people, animals, and the environment from the harmful effects of ionising radiation. Its r ...
recommends limiting occupational radiation exposure to 50 mSv (5 rem) per year, and 100 mSv (10 rem) in 5 years. However, background radiation for occupational doses includes radiation that is not measured by radiation dose instruments in potential occupational exposure conditions. This includes both offsite "natural background radiation" and any medical radiation doses. This value is not typically measured or known from surveys, such that variations in the total dose to individual workers is not known. This can be a significant confounding factor in assessing radiation exposure effects in a population of workers who may have significantly different natural background and medical radiation doses. This is most significant when the occupational doses are very low. At an
IAEA The International Atomic Energy Agency (IAEA) is an intergovernmental organization that seeks to promote the peaceful use of nuclear energy and to inhibit its use for any military purpose, including nuclear weapons. It was established in 195 ...
conference in 2002, it was recommended that occupational doses below 1–2 mSv per year do not warrant regulatory scrutiny.


Nuclear accidents

Under normal circumstances, nuclear reactors release small amounts of radioactive gases, which cause small radiation exposures to the public. Events classified on the
International Nuclear Event Scale The International Nuclear and Radiological Event Scale (INES) was introduced in 1990 by the International Atomic Energy Agency (IAEA) in order to enable prompt communication of safety significant information in case of nuclear accidents. The ...
as incidents typically do not release any additional radioactive substances into the environment. Large releases of radioactivity from nuclear reactors are extremely rare. To the present day, there were two major ''civilian'' accidents – the Chernobyl accident and the
Fukushima I nuclear accidents The was a nuclear accident in 2011 at the Fukushima Daiichi Nuclear Power Plant in Ōkuma, Fukushima, Japan. The proximate cause of the disaster was the 2011 Tōhoku earthquake and tsunami, which occurred on the afternoon of 11 March 2011 ...
– which caused substantial contamination. The Chernobyl accident was the only one to cause immediate deaths. Total doses from the Chernobyl accident ranged from 10 to 50 mSv over 20 years for the inhabitants of the affected areas, with most of the dose received in the first years after the disaster, and over 100 mSv for liquidators. There were 28 deaths from acute radiation syndrome. Total doses from the Fukushima I accidents were between 1 and 15 mSv for the inhabitants of the affected areas. Thyroid doses for children were below 50 mSv. 167 cleanup workers received doses above 100 mSv, with 6 of them receiving more than 250 mSv (the Japanese exposure limit for emergency response workers). The average dose from the
Three Mile Island accident The Three Mile Island accident was a partial meltdown of the Three Mile Island, Unit 2 (TMI-2) reactor in Pennsylvania, United States. It began at 4 a.m. on March 28, 1979. It is the most significant accident in U.S. commercial nuclea ...
was 0.01 mSv. Non-civilian: In addition to the civilian accidents described above, several accidents at early nuclear weapons facilities – such as the
Windscale fire The Windscale fire of 10 October 1957 was the worst nuclear accident in the United Kingdom's history, and one of the worst in the world, ranked in severity at level 5 out of a possible 7 on the International Nuclear Event Scale. The fire was in ...
, the contamination of the
Techa River The Techa is an eastward river on the eastern flank of the southern Ural Mountains noted for its nuclear contamination. It is long, and its basin covers . It begins by the once-secret nuclear processing town of Ozyorsk about northwest of Chely ...
by the nuclear waste from the Mayak compound, and the
Kyshtym disaster The Kyshtym disaster, sometimes referred to as the Mayak disaster or Ozyorsk disaster in newer sources, was a radioactive contamination accident that occurred on 29 September 1957 at Mayak, a plutonium production site for nuclear weapons and nu ...
at the same compound – released substantial radioactivity into the environment. The Windscale fire resulted in thyroid doses of 5–20 mSv for adults and 10–60 mSv for children. The doses from the accidents at Mayak are unknown.


Nuclear fuel cycle

The Nuclear Regulatory Commission, the
United States Environmental Protection Agency The Environmental Protection Agency (EPA) is an independent executive agency of the United States federal government tasked with environmental protection matters. President Richard Nixon proposed the establishment of EPA on July 9, 1970; it ...
, and other U.S. and international agencies, require that licensees limit radiation exposure to individual members of the public to 1  mSv (100 m rem) per year.


Energy sources

Per
UNECE The United Nations Economic Commission for Europe (ECE or UNECE) is one of the five regional commissions under the jurisdiction of the United Nations Economic and Social Council. It was established in order to promote economic cooperation and ...
life-cycle assessment, nearly all sources of energy result in some level of occupational and public exposure to radionuclides as result of their manufacturing or operations. The following table uses man·
Sievert The sievert (symbol: SvNot be confused with the sverdrup or the svedberg, two non-SI units that sometimes use the same symbol.) is a unit in the International System of Units (SI) intended to represent the stochastic health risk of ionizing rad ...
/GW-annum:


Coal burning

Coal plants emit radiation in the form of radioactive fly ash which is inhaled and ingested by neighbours, and incorporated into crops. A 1978 paper from
Oak Ridge National Laboratory Oak Ridge National Laboratory (ORNL) is a U.S. multiprogram science and technology national laboratory sponsored by the U.S. Department of Energy (DOE) and administered, managed, and operated by UT–Battelle as a federally funded research an ...
estimated that coal-fired power plants of that time may contribute a whole-body committed dose of 19 µSv/a to their immediate neighbours in a radius of 500 m. The
United Nations Scientific Committee on the Effects of Atomic Radiation The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) was set up by resolution of the United Nations General Assembly in 1955. 21 states are designated to provide scientists to serve as members of the committee which ...
's 1988 report estimated the committed dose 1 km away to be 20 µSv/a for older plants or 1 µSv/a for newer plants with improved fly ash capture, but was unable to confirm these numbers by test. When coal is burned, uranium, thorium and all the uranium daughters accumulated by disintegration – radium, radon, polonium – are released. Radioactive materials previously buried underground in coal deposits are released as fly ash or, if fly ash is captured, may be incorporated into concrete manufactured with fly ash.


Other sources of dose uptake


Medical

The global average human exposure to artificial radiation is 0.6 mSv/a, primarily from medical imaging. This medical component can range much higher, with an average of 3 mSv per year across the USA population. Other human contributors include smoking, air travel, radioactive building materials, historical nuclear weapons testing, nuclear power accidents and nuclear industry operation. A typical chest x-ray delivers 20 µSv (2 mrem) of effective dose. A dental x-ray delivers a dose of 5 to 10 µSv. A CT scan delivers an effective dose to the whole body ranging from 1 to 20 mSv (100 to 2000 mrem). The average American receives about 3 mSv of diagnostic medical dose per year; countries with the lowest levels of health care receive almost none. Radiation treatment for various diseases also accounts for some dose, both in individuals and in those around them.


Consumer items

Cigarettes contain polonium-210, originating from the decay products of radon, which stick to
tobacco leaves Tobacco is the common name of several plants in the genus ''Nicotiana'' of the family Solanaceae, and the general term for any product prepared from the cured leaves of these plants. More than 70 species of tobacco are known, but the chie ...
. Heavy smoking results in a radiation dose of 160 mSv/year to localized spots at the bifurcations of segmental bronchi in the lungs from the decay of polonium-210. This dose is not readily comparable to the radiation protection limits, since the latter deal with whole body doses, while the dose from smoking is delivered to a very small portion of the body.


Radiation metrology

In a radiation metrology laboratory, background radiation refers to the measured value from any incidental sources that affect an instrument when a specific radiation source sample is being measured. This background contribution, which is established as a stable value by multiple measurements, usually before and after sample measurement, is subtracted from the rate measured when the sample is being measured. This is in accordance with the International Atomic Energy Agency definition of background as being "Dose or dose rate (or an observed measure related to the dose or dose rate) attributable to all sources other than the one(s) specified. The same issue occurs with radiation protection instruments, where a reading from an instrument may be affected by the background radiation. An example of this is a scintillation detector used for surface contamination monitoring. In an elevated gamma background the scintillator material will be affected by the background gamma, which will add to the reading obtained from any contamination which is being monitored. In extreme cases it will make the instrument unusable as the background swamps the lower level of radiation from the contamination. In such instruments the background can be continually monitored in the "Ready" state, and subtracted from any reading obtained when being used in "Measuring" mode. Regular Radiation measurement is carried out at multiple levels. Government agencies compile radiation readings as part of environmental monitoring mandates, often making the readings available to the public and sometimes in near-real-time. Collaborative groups and private individuals may also make real-time readings available to the public. Instruments used for radiation measurement include the Geiger–Müller tube and the Scintillation detector. The former is usually more compact and affordable and reacts to several radiation types, while the latter is more complex and can detect specific radiation energies and types. Readings indicate radiation levels from all sources including background, and real-time readings are in general unvalidated, but correlation between independent detectors increases confidence in measured levels. List of near-real-time government radiation measurement sites, employing multiple instrument types: * Europe and Canada: European Radiological Data Exchange Platform (EURDEP
Simple map of Gamma Dose Rates
* USA: EPA Radne
near-real-time and laboratory data by state
List of international near-real-time collaborative/private measurement sites, employing primarily Geiger-Muller detectors: * GMC map: http://www.gmcmap.com/ (mix of old-data detector stations and some near-real-time ones) * Netc: http://www.netc.com/ * Radmon: http://www.radmon.org/ * Radiation Network: http://radiationnetwork.com/ * Radioactive@Home: http://radioactiveathome.org/map/ * Safecast
http://safecast.org/tilemap
(the green circles are real-time detectors) * uRad Monitor: http://www.uradmonitor.com/


See also

* Background radiation equivalent time (BRET) * Banana equivalent dose * Environmental radioactivity * Flight-time equivalent dose * Noise (electronics) * Low-background steel


References


External links


Background radiation description
from the
Radiation Effects Research Foundation The Radiation Effects Research Foundation (RERF) is a joint U.S.-Japan research organization responsible for studying the medical effects of radiation and associated diseases in humans for the welfare of the survivors and all humankind.Introduction ...

Environmental and Background Radiation FAQ
from the
Health Physics Society The Health Physics Society (HPS) is a nonprofit scientific professional organization whose mission is excellence in the science and practice of radiation safety. It is based in the United States and the specific purposes of the society's activit ...

Radiation Dose Chart
from the
American Nuclear Society The American Nuclear Society (ANS) is an international, not-for-profit organization of scientists, engineers, and industry professionals that promote the field of nuclear engineering and related disciplines. ANS is composed of three communities: ...

Radiation Dose Calculator
from the
United States Environmental Protection Agency The Environmental Protection Agency (EPA) is an independent executive agency of the United States federal government tasked with environmental protection matters. President Richard Nixon proposed the establishment of EPA on July 9, 1970; it ...
{{DEFAULTSORT:Background Radiation Cosmic rays Ionizing radiation Radioactivity