astronomical radio source
   HOME

TheInfoList



OR:

An astronomical radio source is an object in
outer space Outer space, commonly shortened to space, is the expanse that exists beyond Earth and its atmosphere and between celestial bodies. Outer space is not completely empty—it is a near-perfect vacuum containing a low density of particles, pred ...
that emits strong
radio wave Radio waves are a type of electromagnetic radiation with the longest wavelengths in the electromagnetic spectrum, typically with frequencies of 300 gigahertz ( GHz) and below. At 300 GHz, the corresponding wavelength is 1 mm (sho ...
s. Radio emission comes from a wide variety of sources. Such objects are among the most extreme and energetic physical processes in the
universe The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the universe. A ...
.


History

In 1932, American
physicist A physicist is a scientist who specializes in the field of physics, which encompasses the interactions of matter and energy at all length and time scales in the physical universe. Physicists generally are interested in the root or ultimate ca ...
and
radio Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 30 hertz (Hz) and 300  gigahertz (GHz). They are generated by an electronic device called a transm ...
engineer Engineers, as practitioners of engineering, are professionals who invent, design, analyze, build and test machines, complex systems, structures, gadgets and materials to fulfill functional objectives and requirements while considering the l ...
Karl Jansky detected
radio waves Radio waves are a type of electromagnetic radiation with the longest wavelengths in the electromagnetic spectrum, typically with frequencies of 300 gigahertz ( GHz) and below. At 300 GHz, the corresponding wavelength is 1 mm (s ...
coming from an unknown source in the center of our
galaxy A galaxy is a system of stars, stellar remnants, interstellar gas, dust, dark matter, bound together by gravity. The word is derived from the Greek ' (), literally 'milky', a reference to the Milky Way galaxy that contains the Solar Sys ...
. Jansky was studying the origins of radio frequency interference for
Bell Laboratories Nokia Bell Labs, originally named Bell Telephone Laboratories (1925–1984), then AT&T Bell Laboratories (1984–1996) and Bell Labs Innovations (1996–2007), is an American industrial research and scientific development company owned by mul ...
. He found "...a steady hiss type static of unknown origin", which eventually he concluded had an extraterrestrial origin. This was the first time that radio waves were detected from outer space. The first radio sky survey was conducted by Grote Reber and was completed in 1941. In the 1970s, some stars in our galaxy were found to be radio emitters, one of the strongest being the unique binary MWC 349.


Sources: solar system


The Sun

As the nearest star, the Sun is the brightest radiation source in most frequencies, down to the radio spectrum at 300 MHz (1 m wavelength). When the Sun is quiet, the galactic background noise dominates at longer wavelengths. During geomagnetic storms, the Sun will dominate even at these low frequencies.


Jupiter

Oscillation of electrons trapped in the
magnetosphere of Jupiter The magnetosphere of Jupiter is the cavity created in the solar wind by the planet's magnetic field. Extending up to seven million kilometers in the Sun's direction and almost to the orbit of Saturn in the opposite direction, Jupiter's magnetosp ...
produce strong radio signals, particularly bright in the decimeter band. The magnetosphere of Jupiter is responsible for intense episodes of radio emission from the planet's polar regions. Volcanic activity on Jupiter's moon Io injects gas into Jupiter's magnetosphere, producing a torus of particles about the planet. As Io moves through this torus, the interaction generates Alfvén waves that carry ionized matter into the polar regions of Jupiter. As a result, radio waves are generated through a
cyclotron A cyclotron is a type of particle accelerator invented by Ernest O. Lawrence in 1929–1930 at the University of California, Berkeley, and patented in 1932. Lawrence, Ernest O. ''Method and apparatus for the acceleration of ions'', filed: J ...
maser mechanism, and the energy is transmitted out along a cone-shaped surface. When Earth intersects this cone, the radio emissions from Jupiter can exceed the solar radio output.


Ganymede

In 2021 news outlets reported that scientists, with the Juno spacecraft that orbits Jupiter since 2016, detected an FM radio signal from the moon Ganymede at a location where the planet's magnetic field lines connect with those of its moon. According to the reports these were caused by cyclotron maser instability and were similar to both
WiFi Wi-Fi () is a family of wireless network protocols, based on the IEEE 802.11 family of standards, which are commonly used for local area networking of devices and Internet access, allowing nearby digital devices to exchange data by radio wa ...
-signals and Jupiter's radio emissions. A study about the radio emissions was published in September 2020 but did not describe them to be of FM nature or similar to WiFi signals.


Sources: Galactic


The Galactic Center

The
center of the Milky Way The Galactic Center or Galactic Centre is the rotational center, the barycenter, of the Milky Way galaxy. Its central massive object is a supermassive black hole of about 4 million solar masses, which is called Sagittarius A*, a compact ...
was the first radio source to be detected. It contains a number of radio sources, including Sagittarius A, the compact region around the
supermassive black hole A supermassive black hole (SMBH or sometimes SBH) is the largest type of black hole, with its mass being on the order of hundreds of thousands, or millions to billions of times the mass of the Sun (). Black holes are a class of astronomical obj ...
,
Sagittarius A* Sagittarius A* ( ), abbreviated Sgr A* ( ), is the supermassive black hole at the Galactic Center of the Milky Way. It is located near the border of the constellations Sagittarius and Scorpius, about 5.6° south of the ecliptic, ...
, as well as the black hole itself. When flaring, the
accretion disk An accretion disk is a structure (often a circumstellar disk) formed by diffuse material in orbital motion around a massive central body. The central body is typically a star. Friction, uneven irradiance, magnetohydrodynamic effects, and other ...
around the supermassive black hole lights up, detectable in radio waves. In the 2000s, three Galactic Center Radio Transients (GCRTs) were detected: GCRT J1746–2757, GCRT J1745–3009, and GCRT J1742–3001. In addition, ASKAP J173608.2-321635, which was detected six times in 2020, may be a fourth GCRT. ;Region around the Galactic Center In 2021, astronomers reported the detection of peculiar, highly circularly polarized intermittent radio waves from near the galactic center whose unidentified source could represent a new class of astronomical objects with a GCRT so far not "fully explain ngthe observations".


Supernova remnants

Supernova remnant A supernova remnant (SNR) is the structure resulting from the explosion of a star in a supernova. The supernova remnant is bounded by an expanding shock wave, and consists of ejected material expanding from the explosion, and the interstellar ma ...
s often show diffuse radio emission. Examples include Cassiopeia A, the brightest extrasolar radio source in the sky, and the
Crab Nebula The Crab Nebula (catalogue designations Messier object, M1, New General Catalogue, NGC 1952, Taurus (constellation), Taurus A) is a supernova remnant and pulsar wind nebula in the constellation of Taurus (constellation), Taurus. The common name ...
.


Neutron stars


Pulsars

Supernovae sometimes leave behind dense spinning neutron stars called
pulsar A pulsar (from ''pulsating radio source'') is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its magnetic poles. This radiation can be observed only when a beam of emission is pointing toward E ...
s. They emit jets of charged particles which emit
synchrotron radiation Synchrotron radiation (also known as magnetobremsstrahlung radiation) is the electromagnetic radiation emitted when relativistic charged particles are subject to an acceleration perpendicular to their velocity (). It is produced artificially in ...
in the radio spectrum. Examples include the
Crab Pulsar The Crab Pulsar (PSR B0531+21) is a relatively young neutron star. The star is the central star in the Crab Nebula, a remnant of the supernova SN 1054, which was widely observed on Earth in the year 1054.quasar A quasar is an extremely luminous active galactic nucleus (AGN). It is pronounced , and sometimes known as a quasi-stellar object, abbreviated QSO. This emission from a galaxy nucleus is powered by a supermassive black hole with a mass rangin ...
s (dense central cores of extremely distant galaxies) were both discovered by radio astronomers. In 2003 astronomers using the Parkes radio telescope discovered two pulsars orbiting each other, the first such system known.


Rotating Radio Transient (RRAT) Sources

Rotating radio transients (RRATs) are a type of neutron stars discovered in 2006 by a team led by Maura McLaughlin from the
Jodrell Bank Observatory Jodrell Bank Observatory () in Cheshire, England, hosts a number of radio telescopes as part of the Jodrell Bank Centre for Astrophysics at the University of Manchester. The observatory was established in 1945 by Bernard Lovell, a radio astr ...
at the
University of Manchester The University of Manchester is a public university, public research university in Manchester, England. The main campus is south of Manchester city centre, Manchester City Centre on Wilmslow Road, Oxford Road. The university owns and operates majo ...
in the UK. RRATs are believed to produce radio emissions which are very difficult to locate, because of their transient nature. Early efforts have been able to detect radio emissions (sometimes called RRAT flashes) for less than one second a day, and, like with other single-burst signals, one must take great care to distinguish them from terrestrial radio interference. Distributing computing and the Astropulse algorithm may thus lend itself to further detection of RRATs.


Star forming regions

Short
radio waves Radio waves are a type of electromagnetic radiation with the longest wavelengths in the electromagnetic spectrum, typically with frequencies of 300 gigahertz ( GHz) and below. At 300 GHz, the corresponding wavelength is 1 mm (s ...
are emitted from complex
molecules A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioc ...
in dense clouds of gas where
star A star is an astronomical object comprising a luminous spheroid of plasma held together by its gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night, but their immense distances from Earth make ...
s are giving birth.
Spiral galaxies Spiral galaxies form a class of galaxy originally described by Edwin Hubble in his 1936 work ''The Realm of the Nebulae''neutral hydrogen and
carbon monoxide Carbon monoxide ( chemical formula CO) is a colorless, poisonous, odorless, tasteless, flammable gas that is slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the si ...
which emit radio waves. The radio frequencies of these two molecules were used to map a large portion of the Milky Way galaxy.


Sources: extra-galactic


Radio galaxies

Many galaxies are strong radio emitters, called
radio galaxies A radio galaxy is a galaxy with giant regions of radio emission extending well beyond its visible structure. These energetic radio lobes are powered by jets from its active galactic nucleus. They have luminosities up to 1039  W at radio wav ...
. Some of the more notable are Centaurus A and
Messier 87 Messier 87 (also known as Virgo A or NGC 4486, generally abbreviated to M87) is a supergiant elliptical galaxy with several trillion stars in the constellation Virgo. One of the largest and most massive galaxies in the local uni ...
.
Quasar A quasar is an extremely luminous active galactic nucleus (AGN). It is pronounced , and sometimes known as a quasi-stellar object, abbreviated QSO. This emission from a galaxy nucleus is powered by a supermassive black hole with a mass rangin ...
s (short for "quasi-stellar radio source") were one of the first point-like radio sources to be discovered. Quasars' extreme
redshift In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and simultaneous increase in f ...
led us to conclude that they are distant active galactic nuclei, believed to be powered by
black hole A black hole is a region of spacetime where gravity is so strong that nothing, including light or other electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts that a sufficiently compact mass can defo ...
s.
Active galactic nuclei An active galactic nucleus (AGN) is a compact region at the center of a galaxy that has a much-higher-than-normal luminosity over at least some portion of the electromagnetic spectrum with characteristics indicating that the luminosity is not prod ...
have jets of charged particles which emit
synchrotron radiation Synchrotron radiation (also known as magnetobremsstrahlung radiation) is the electromagnetic radiation emitted when relativistic charged particles are subject to an acceleration perpendicular to their velocity (). It is produced artificially in ...
. One example is 3C 273, the optically brightest quasar in the sky. Merging galaxy clusters often show diffuse radio emission.


Cosmic microwave background

The cosmic microwave background is
blackbody A black body or blackbody is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. The name "black body" is given because it absorbs all colors of light. A black body a ...
background radiation Background radiation is a measure of the level of ionizing radiation present in the environment at a particular location which is not due to deliberate introduction of radiation sources. Background radiation originates from a variety of source ...
left over from the
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from t ...
(the rapid expansion, roughly 13.8 billion years ago, that was the beginning of the
universe The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the universe. A ...
.


Extragalactic pulses - Fast Radio Burst

D. R. Lorimer and others analyzed archival survey data and found a 30- jansky dispersed burst, less than 5 milliseconds in duration, located 3° from the
Small Magellanic Cloud The Small Magellanic Cloud (SMC), or Nubecula Minor, is a dwarf galaxy near the Milky Way. Classified as a dwarf irregular galaxy, the SMC has a D25 isophotal diameter of about , and contains several hundred million stars. It has a total mass of ...
. They reported that the burst properties argue against a physical association with our Galaxy or the Small Magellanic Cloud. In a recent paper, they argue that current models for the free electron content in the universe imply that the burst is less than 1 giga
parsec The parsec (symbol: pc) is a unit of length used to measure the large distances to astronomical objects outside the Solar System, approximately equal to or (au), i.e. . The parsec unit is obtained by the use of parallax and trigonometry, a ...
distant. The fact that no further bursts were seen in 90 hours of additional observations implies that it was a singular event such as a supernova or coalescence (fusion) of relativistic objects. It is suggested that hundreds of similar events could occur every day and, if detected, could serve as cosmological probes. Radio pulsar surveys such as Astropulse-SETI@home offer one of the few opportunities to monitor the radio sky for impulsive burst-like events with millisecond durations. Because of the isolated nature of the observed phenomenon, the nature of the source remains speculative. Possibilities include a black hole-
neutron star A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich. Except for black holes and some hypothetical objects (e.g. w ...
collision, a neutron star-neutron star collision, a black hole-black hole collision, or some phenomenon not yet considered. In 2010 there was a new report of 16 similar pulses from the Parkes Telescope which were clearly of terrestrial origin, but in 2013 four pulse sources were identified that supported the likelihood of a genuine extragalactic pulsing population. These pulses are known as ''fast radio bursts'' (FRBs). The first observed burst has become known as the ''Lorimer burst''. Blitzars are one proposed explanation for them.


Sources: not yet observed


Primordial black holes

According to the Big Bang Model, during the first few moments after the Big Bang, pressure and temperature were extremely great. Under these conditions, simple fluctuations in the density of matter may have resulted in local regions dense enough to create black holes. Although most regions of high density would be quickly dispersed by the expansion of the universe, a primordial black hole would be stable, persisting to the present. One goal of Astropulse is to detect postulated mini black holes that might be evaporating due to "
Hawking radiation Hawking radiation is theoretical black body radiation that is theorized to be released outside a black hole's event horizon because of relativistic quantum effects. It is named after the physicist Stephen Hawking, who developed a theoretical ar ...
". Such mini black holes are postulated to have been created during the Big Bang, unlike currently known black holes.
Martin Rees Martin John Rees, Baron Rees of Ludlow One or more of the preceding sentences incorporates text from the royalsociety.org website where: (born 23 June 1942) is a British cosmologist and astrophysicist. He is the fifteenth Astronomer Roya ...
has theorized that a black hole, exploding via Hawking radiation, might produce a signal that's detectable in the radio. The Astropulse project hopes that this evaporation would produce radio waves that Astropulse can detect. The evaporation wouldn't create radio waves directly. Instead, it would create an expanding fireball of high-energy
gamma rays A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically sh ...
and particles. This fireball would interact with the surrounding magnetic field, pushing it out and generating radio waves.


ET

Previous searches by various "search for extraterrestrial intelligence" (SETI) projects, starting with Project Ozma, have looked for extraterrestrial communications in the form of narrow-band signals, analogous to our own radio stations. The Astropulse project argues that since we know nothing about how ET might communicate, this might be a bit closed-minded. Thus, the Astropulse Survey can be viewed as complementary to the narrow-band SETI@home survey as a by-product of the search for physical phenomena.


Other undiscovered phenomena

Explaining their discovery in 2005 of a powerful bursting radio source, NRL astronomer Dr. Joseph Lazio stated: "Amazingly, even though the sky is known to be full of transient objects emitting at X- and gamma-ray wavelengths, very little has been done to look for radio bursts, which are often easier for astronomical objects to produce." The use of coherent dedispersion algorithms and the computing power provided by the SETI network may lead to discovery of previously undiscovered phenomena.


See also

*
Active galactic nucleus An active galactic nucleus (AGN) is a compact region at the center of a galaxy that has a much-higher-than-normal luminosity over at least some portion of the electromagnetic spectrum with characteristics indicating that the luminosity is not pro ...
*
Astrometry Astrometry is a branch of astronomy that involves precise measurements of the positions and movements of stars and other celestial bodies. It provides the kinematics and physical origin of the Solar System and this galaxy, the Milky Way. Histor ...
*
Electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible ...
*
Radio astronomy Radio astronomy is a subfield of astronomy that studies celestial objects at radio frequencies. The first detection of radio waves from an astronomical object was in 1933, when Karl Jansky at Bell Telephone Laboratories reported radiation comi ...
*
Astrophysical X-ray source Astrophysical X-ray sources are astronomical objects with physical properties which result in the emission of X-rays. Several types of astrophysical objects emit X-rays. They include galaxy clusters, black holes in active galactic nuclei (A ...


References

{{DEFAULTSORT:Astronomical Radio Source Radio astronomy