antihydrogen
   HOME

TheInfoList



OR:

Antihydrogen () is the
antimatter In modern physics, antimatter is defined as matter composed of the antiparticles (or "partners") of the corresponding subatomic particle, particles in "ordinary" matter, and can be thought of as matter with reversed charge and parity, or go ...
counterpart of
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
. Whereas the common
hydrogen atom A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral hydrogen atom contains a single positively charged proton in the nucleus, and a single negatively charged electron bound to the nucleus by the Coulomb for ...
is composed of an
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
and
proton A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
, the antihydrogen atom is made up of a
positron The positron or antielectron is the particle with an electric charge of +1''elementary charge, e'', a Spin (physics), spin of 1/2 (the same as the electron), and the same Electron rest mass, mass as an electron. It is the antiparticle (antimatt ...
and
antiproton The antiproton, , (pronounced ''p-bar'') is the antiparticle of the proton. Antiprotons are stable, but they are typically short-lived, since any collision with a proton will cause both particles to be annihilated in a burst of energy. The exis ...
. Scientists hope that studying antihydrogen may shed light on the question of why there is more
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic pa ...
than
antimatter In modern physics, antimatter is defined as matter composed of the antiparticles (or "partners") of the corresponding subatomic particle, particles in "ordinary" matter, and can be thought of as matter with reversed charge and parity, or go ...
in the observable universe, known as the baryon asymmetry problem. Antihydrogen is produced artificially in
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel electric charge, charged particles to very high speeds and energies to contain them in well-defined particle beam, beams. Small accelerators are used for fundamental ...
s.


Experimental history

Accelerators first detected hot antihydrogen in the 1990s. ATHENA studied cold in 2002. It was first trapped by the Antihydrogen Laser Physics Apparatus (ALPHA Collaboration, ALPHA) team at CERN in 2010, who then measured the structure and other important properties. ALPHA
AEgIS
and GBAR plan to further cool and study atoms.


1s–2s transition measurement

In 2016, the
ALPHA Alpha (uppercase , lowercase ) is the first letter of the Greek alphabet. In the system of Greek numerals, it has a value of one. Alpha is derived from the Phoenician letter ''aleph'' , whose name comes from the West Semitic word for ' ...
experiment measured the
atomic electron transition In atomic physics and chemistry, an atomic electron transition (also called an atomic transition, quantum jump, or quantum leap) is an electron changing from one energy level to another within an atom or artificial atom. The time scale of a qua ...
between the two lowest
energy level A quantum mechanics, quantum mechanical system or particle that is bound state, bound—that is, confined spatially—can only take on certain discrete values of energy, called energy levels. This contrasts with classical mechanics, classical pa ...
s of antihydrogen, 1s–2s. The results, which are identical to that of hydrogen within the experimental resolution, support the idea of matter–antimatter symmetry and
CPT symmetry Charge, parity, and time reversal symmetry is a fundamental symmetry of physical laws under the simultaneous transformations of charge conjugation (C), parity transformation (P), and time reversal (T). CPT is the only combination of C, P, and ...
. In the presence of a magnetic field the 1s–2s transition splits into two hyperfine transitions with slightly different frequencies. The team calculated the transition frequencies for normal hydrogen under the magnetic field in the confinement volume as: :fdd = :fcc = A single-photon transition between s states is prohibited by quantum
selection rule In physics and chemistry, a selection rule, or transition rule, formally constrains the possible transitions of a system from one quantum state to another. Selection rules have been derived for electromagnetic transitions in molecules, in atoms, in ...
s, so to elevate ground state positrons to the 2s level, the confinement space was illuminated by a laser tuned to half the calculated transition frequencies, stimulating allowed two photon absorption. Antihydrogen atoms excited to the 2s state can then evolve in one of several ways: *They can emit two photons and return directly to the ground state as they were *They can absorb another photon, which ionizes the atom *They can emit a single photon and return to the ground state via the 2p state—in this case the positron spin can flip or remain the same. Both the ionization and spin-flip outcomes cause the atom to escape confinement. The team calculated that, assuming antihydrogen behaves like normal hydrogen, roughly half the antihydrogen atoms would be lost during the resonant frequency exposure, as compared to the no-laser case. With the laser source tuned 200 kHz below half the transition frequencies, the calculated loss was essentially the same as for the no-laser case. The ALPHA team made batches of antihydrogen, held them for 600 seconds and then tapered down the confinement field over 1.5 seconds while counting how many antihydrogen atoms were annihilated. They did this under three different experimental conditions: *Resonance: exposing the confined antihydrogen atoms to a laser source tuned to exactly half the transition frequency for 300 seconds for each of the two transitions, *Off-resonance: exposing the confined antihydrogen atoms to a laser source tuned 200 kilohertz below the two resonance frequencies for 300 seconds each, *No-laser: confining the antihydrogen atoms without any laser illumination. The two controls, off-resonance and no-laser, were needed to ensure that the laser illumination itself was not causing annihilations, perhaps by liberating normal atoms from the confinement vessel surface that could then combine with the antihydrogen. The team conducted 11 runs of the three cases and found no significant difference between the off-resonance and no laser runs, but a 58% drop in the number of events detected after the resonance runs. They were also able to count annihilation events during the runs and found a higher level during the resonance runs, again with no significant difference between the off-resonance and no laser runs. The results were in good agreement with predictions based on normal hydrogen and can be "interpreted as a test of CPT symmetry at a precision of 200 ppt."


Characteristics

The CPT theorem of particle physics predicts antihydrogen atoms have many of the characteristics regular hydrogen has; i.e. the same
mass Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
,
magnetic moment In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude ...
, and atomic state transition frequencies (see '' atomic spectroscopy''). For example, excited antihydrogen atoms are expected to glow the same color as regular hydrogen. Antihydrogen atoms should be attracted to other matter or antimatter gravitationally with a force of the same magnitude that ordinary hydrogen atoms experience. This would not be true if antimatter has negative gravitational mass, which is considered highly unlikely, though not yet empirically disproven (see ''
gravitational interaction of antimatter The gravitational interaction of antimatter with matter or antimatter has been observed by physicists. As was the consensus among physicists previously, it was experimentally confirmed that gravity attracts both matter and antimatter at the sam ...
''). Recent theoretical framework for negative mass and repulsive gravity (antigravity) between matter and antimatter has been developed, and the theory is compatible with CPT theorem. When antihydrogen comes into contact with ordinary matter, its constituents quickly annihilate. The positron annihilates with an electron to produce
gamma ray A gamma ray, also known as gamma radiation (symbol ), is a penetrating form of electromagnetic radiation arising from high energy interactions like the radioactive decay of atomic nuclei or astronomical events like solar flares. It consists o ...
s. The antiproton, on the other hand, is made up of antiquarks that combine with quarks in either neutrons or protons, resulting in high-energy
pion In particle physics, a pion (, ) or pi meson, denoted with the Greek alphabet, Greek letter pi (letter), pi (), is any of three subatomic particles: , , and . Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the ...
s, that quickly decay into
muon A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of  ''ħ'', but with a much greater mass. It is classified as a ...
s,
neutrino A neutrino ( ; denoted by the Greek letter ) is an elementary particle that interacts via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small ('' -ino'') that i ...
s,
positron The positron or antielectron is the particle with an electric charge of +1''elementary charge, e'', a Spin (physics), spin of 1/2 (the same as the electron), and the same Electron rest mass, mass as an electron. It is the antiparticle (antimatt ...
s, and
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s. If antihydrogen atoms were suspended in a perfect vacuum, they should survive indefinitely. As an anti-element, it is expected to have exactly the same properties as hydrogen. For example, antihydrogen would be a gas under standard conditions and combine with antioxygen to form antiwater, 2.


Production

The first antihydrogen was produced in 1995 by a team led by Walter Oelert at CERN using a method first proposed by Charles Munger Jr, Stanley Brodsky and Ivan Schmidt Andrade. In the LEAR, antiprotons from an accelerator were shot at
xenon Xenon is a chemical element; it has symbol Xe and atomic number 54. It is a dense, colorless, odorless noble gas found in Earth's atmosphere in trace amounts. Although generally unreactive, it can undergo a few chemical reactions such as the ...
clusters, producing electron-positron pairs. Antiprotons can capture positrons with probability about , so this method is not suited for substantial production, as calculated.
Fermilab Fermi National Accelerator Laboratory (Fermilab), located in Batavia, Illinois, near Chicago, is a United States Department of Energy United States Department of Energy National Labs, national laboratory specializing in high-energy particle phys ...
measured a somewhat different cross section, in agreement with predictions of
quantum electrodynamics In particle physics, quantum electrodynamics (QED) is the Theory of relativity, relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quant ...
. Both resulted in highly energetic, or hot, anti-atoms, unsuitable for detailed study. Subsequently, CERN built the
Antiproton Decelerator The Antiproton Decelerator (AD) is a storage ring at the CERN laboratory near Geneva. It was built from the Antiproton Collector (AC) to be a successor to the Low Energy Antiproton Ring (LEAR) and started operation in the year 2000. Antiprotons ...
(AD) to support efforts towards low-energy antihydrogen, for tests of fundamental symmetries. The AD supplies several CERN groups. CERN expects their facilities will be capable of producing 10 million antiprotons per minute.


Low-energy antihydrogen

Experiments by the ATRAP and ATHENA collaborations at CERN, brought together positrons and antiprotons in
Penning trap A Penning trap is a device for the storage of charged particles using a homogeneous magnetic field and a quadrupole electric field. It is mostly found in the physical sciences and related fields of study for precision measurements of properties o ...
s, resulting in synthesis at a typical rate of 100 antihydrogen atoms per second. Antihydrogen was first produced by ATHENA in 2002, and then by ATRAP and by 2004, millions of antihydrogen atoms were made. The atoms synthesized had a relatively high temperature (a few thousand kelvins), and would hit the walls of the experimental apparatus as a consequence and annihilate. Most precision tests require long observation times. ALPHA, a successor of the ATHENA collaboration, was formed to stably trap antihydrogen. While electrically neutral, its spin
magnetic moment In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude ...
s interact with an inhomogeneous magnetic field; some atoms will be attracted to a magnetic minimum, created by a combination of mirror and multipole fields. In November 2010, the ALPHA collaboration announced that they had trapped 38 antihydrogen atoms for a sixth of a second, the first confinement of neutral antimatter. In June 2011, they trapped 309 antihydrogen atoms, up to 3 simultaneously, for up to 1,000 seconds. They then studied its hyperfine structure, gravity effects, and charge. ALPHA will continue measurements along with experiments ATRAP,
AEgIS
and GBAR. In 2018
AEgIS
has produced a novel pulsed source of antihydrogen atoms with a production time spread of merely 250 nanoseconds. The pulsed source is generated by the charge exchange reaction between Rydberg
positronium Positronium (Ps) is a system consisting of an electron and its antimatter, anti-particle, a positron, bound together into an exotic atom, specifically an onium. Unlike hydrogen, the system has no protons. The system is unstable: the two part ...
atoms -- produced via the injection of a pulsed positron beam into a nanochanneled Si target, and excited by laser pulses -- and antiprotons, trapped, cooled and manipulated in electromagnetic traps. The pulsed production enables the control of the antihydrogen temperature, the formation of an antihydrogen beam, and in the next phase a precision measurement on the gravitational behaviour using an atomic interferometer, the so-called Moiré deflectormeter.


Larger antimatter atoms

Larger antimatter atoms such as antideuterium (), antitritium (), and
antihelium In modern physics, antimatter is defined as matter composed of the antiparticles (or "partners") of the corresponding particles in "ordinary" matter, and can be thought of as matter with reversed charge and parity, or going backward in time ...
() are much more difficult to produce. Antideuterium, antihelium-3 () and antihelium-4 () nuclei have been produced with such high velocities that synthesis of their corresponding atoms poses several technical hurdles.


See also

*
Gravitational interaction of antimatter The gravitational interaction of antimatter with matter or antimatter has been observed by physicists. As was the consensus among physicists previously, it was experimentally confirmed that gravity attracts both matter and antimatter at the sam ...


References


External links

* {{Authority control Antimatter Hydrogen Hydrogen physics Gases