antigenic shift
   HOME

TheInfoList



OR:

Antigenic shift is the process by which two or more different strains of a
virus A virus is a wikt:submicroscopic, submicroscopic infectious agent that replicates only inside the living Cell (biology), cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and ...
, or strains of two or more different viruses, combine to form a new subtype having a mixture of the surface
antigen In immunology, an antigen (Ag) is a molecule or molecular structure or any foreign particulate matter or a pollen grain that can bind to a specific antibody or T-cell receptor. The presence of antigens in the body may trigger an immune response. ...
s of the two or more original strains. The term is often applied specifically to
influenza Influenza, commonly known as "the flu", is an infectious disease caused by influenza viruses. Symptoms range from mild to severe and often include fever, runny nose, sore throat, muscle pain, headache, coughing, and fatigue. These symptom ...
, as that is the best-known example, but the process is also known to occur with other viruses, such as visna virus in sheep. Antigenic shift is a specific case of
reassortment Reassortment is the mixing of the genetic material of a species into new combinations in different individuals. Several different processes contribute to reassortment, including assortment of chromosomes, and chromosomal crossover. It is particu ...
or viral shift that confers a phenotypic change. Antigenic shift is contrasted with antigenic drift, which is the natural
mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, m ...
over time of known strains of influenza (or other things, in a more general sense) which may lead to a loss of immunity, or in vaccine mismatch. Antigenic drift occurs in all types of influenza including influenza A, influenza B and influenza C. Antigenic shift, however, occurs only in influenza A because it infects more than just humans. Affected species include other mammals and
bird Birds are a group of warm-blooded vertebrates constituting the class Aves (), characterised by feathers, toothless beaked jaws, the laying of hard-shelled eggs, a high metabolic rate, a four-chambered heart, and a strong yet lightweig ...
s, giving influenza A the opportunity for a major reorganization of surface antigens. Influenza B and C principally infect humans, minimizing the chance that a
reassortment Reassortment is the mixing of the genetic material of a species into new combinations in different individuals. Several different processes contribute to reassortment, including assortment of chromosomes, and chromosomal crossover. It is particu ...
will change its
phenotype In genetics, the phenotype () is the set of observable characteristics or traits of an organism. The term covers the organism's morphology or physical form and structure, its developmental processes, its biochemical and physiological prop ...
drastically. In 1940s, Maurice Hilleman discovered antigenic shift, which is important for the emergence of new viral
pathogen In biology, a pathogen ( el, πάθος, "suffering", "passion" and , "producer of") in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a ger ...
s as it is a pathway that viruses may follow to enter a new niche.


Role in the transmission of influenza viruses from non-human animals to people

Influenza A viruses are found in many different animals, including ducks, chickens, pigs, humans, whales, horses, and seals. Influenza B viruses circulate widely principally among humans, though it has recently been found in seals. Flu strains are named after their types of hemagglutinin and neuraminidase surface
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respon ...
s (of which there are 18 and 9 respectively), so they will be called, for example, H3N2 for type-3 hemagglutinin and type-2 neuraminidase. Some strains of avian influenza (from which all other strains of influenza A are believed to stem) can infect pigs or other mammalian hosts. When two different strains of influenza infect the same cell simultaneously, their protein
capsid A capsid is the protein shell of a virus, enclosing its genetic material. It consists of several oligomeric (repeating) structural subunits made of protein called protomers. The observable 3-dimensional morphological subunits, which may or may ...
s and
lipid Lipids are a broad group of naturally-occurring molecules which includes fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids incl ...
envelopes are removed, exposing their
RNA Ribonucleic acid (RNA) is a polymeric molecule essential in various biological roles in coding, decoding, regulation and expression of genes. RNA and deoxyribonucleic acid ( DNA) are nucleic acids. Along with lipids, proteins, and carbohydra ...
, which is then transcribed to
mRNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of synthesizing a protein. mRNA is created during the ...
. The host cell then forms new viruses that combine their antigens; for example, H3N2 and H5N1 can form H5N2 this way. Because the human
immune system The immune system is a network of biological processes that protects an organism from diseases. It detects and responds to a wide variety of pathogens, from viruses to parasitic worms, as well as Tumor immunology, cancer cells and objects such ...
has difficulty recognizing the new influenza strain, it may be highly dangerous, and result in a new pandemic. Influenza viruses which have undergone antigenic shift have caused the Asian Flu pandemic of 1957, the Hong Kong Flu pandemic of 1968, and the Swine Flu scare of 1976. Until recently, such combinations were believed to have caused the infamous Spanish flu outbreak of 1918 which killed 40~100 million people worldwide. However, more recent research suggests the 1918 pandemic was caused by the antigenic drift of a fully avian virus to a form that could infect humans efficiently. The most recent 2009 H1N1 outbreak was a result of antigenic shift and reassortment between human, avian, and swine viruses.


Role of pigs in Influenza antigenic shift

Pigs are especially important in antigenic shift of influenza viruses. Because pigs can be infected with strains of influenza that infect various other species of animals, they act as 'mixing pots' for the virus. When multiple virus strains, such as a duck and human influenza strain, infect the same pig, antigenic shift is likely to occur. While most of the virus strains resulting from this will be dead-end strains, a few have the potential to become pandemic viruses.


See also

*
Coinfection Coinfection is the simultaneous infection of a host by multiple pathogen species. In virology, coinfection includes simultaneous infection of a single cell by two or more virus particles. An example is the coinfection of liver cells with h ...


Notes


Further reading

*


External links


Superflu: Antigenic shift in Influenza
{{DEFAULTSORT:Antigenic Shift Virology Influenza