aluminium-26
   HOME

TheInfoList



OR:

Aluminium-26 (26Al, Al-26) is a radioactive isotope of the
chemical element A chemical element is a chemical substance whose atoms all have the same number of protons. The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8: each oxygen atom has 8 protons in its ...
aluminium Aluminium (or aluminum in North American English) is a chemical element; it has chemical symbol, symbol Al and atomic number 13. It has a density lower than that of other common metals, about one-third that of steel. Aluminium has ...
, decaying by either
positron emission Positron emission, beta plus decay, or β+ decay is a subtype of radioactive decay called beta decay, in which a proton inside a radionuclide nucleus is converted into a neutron while releasing a positron and an electron neutrino (). Positron emi ...
or
electron capture Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. Th ...
to stable
magnesium Magnesium is a chemical element; it has Symbol (chemistry), symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 ...
-26. The
half-life Half-life is a mathematical and scientific description of exponential or gradual decay. Half-life, half life or halflife may also refer to: Film * Half-Life (film), ''Half-Life'' (film), a 2008 independent film by Jennifer Phang * ''Half Life: ...
of 26Al is 717,000 years. This is far too short for the isotope to survive as a primordial nuclide, but a small amount of it is produced by collisions of atoms with
cosmic ray Cosmic rays or astroparticles are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the ...
proton A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
s. Decay of aluminium-26 also produces
gamma rays A gamma ray, also known as gamma radiation (symbol ), is a penetrating form of electromagnetic radiation arising from high energy interactions like the radioactive decay of atomic nuclei or astronomical events like solar flares. It consists o ...
and
x-rays An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
. The x-rays and Auger electrons are emitted by the excited atomic shell of the daughter 26Mg after the electron capture which typically leaves a hole in one of the lower sub-shells. Because it is radioactive, it is typically stored behind at least of lead. Contact with 26Al may result in radiological contamination. This necessitates special tools for transfer, use, and storage.


Dating

Aluminium-26 can be used to calculate the terrestrial age of
meteorite A meteorite is a rock (geology), rock that originated in outer space and has fallen to the surface of a planet or Natural satellite, moon. When the original object enters the atmosphere, various factors such as friction, pressure, and chemical ...
s and
comet A comet is an icy, small Solar System body that warms and begins to release gases when passing close to the Sun, a process called outgassing. This produces an extended, gravitationally unbound atmosphere or Coma (cometary), coma surrounding ...
s. It is produced in significant quantities in extraterrestrial objects via spallation of
silicon Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
alongside beryllium-10, though after falling to Earth, 26Al production ceases and its abundance relative to other cosmogenic nuclides decreases. Absence of aluminium-26 sources on
Earth Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
is a consequence of Earth's atmosphere obstructing silicon on the surface and low troposphere from interaction with cosmic rays. Consequently, the amount of 26Al in the sample can be used to calculate the date the meteorite fell to Earth.


Occurrence in the interstellar medium

The gamma ray emission from the decay of aluminium-26 at 1809 keV was the first observed gamma emission from the
Galactic Center The Galactic Center is the barycenter of the Milky Way and a corresponding point on the rotational axis of the galaxy. Its central massive object is a supermassive black hole of about 4 million solar masses, which is called Sagittarius A*, a ...
. The observation was made by the HEAO-3 satellite in 1984. 26Al is mainly produced in
supernova A supernova (: supernovae or supernovas) is a powerful and luminous explosion of a star. A supernova occurs during the last stellar evolution, evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion ...
e ejecting many radioactive nuclides in the
interstellar medium The interstellar medium (ISM) is the matter and radiation that exists in the outer space, space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as cosmic dust, dust and cosmic rays. It f ...
. The isotope is believed to be crucial for the evolution of planetary objects, providing enough heat to melt and differentiate accreting planetesimals. This is known to have happened during the early history of the asteroids 1 Ceres and
4 Vesta Vesta (minor-planet designation: 4 Vesta) is one of the largest objects in the asteroid belt, with a mean diameter of . It was discovered by the German astronomer Heinrich Wilhelm Matthias Olbers on 29 March 1807 and is named after Vesta (mytho ...
. 26Al has been hypothesized to have played a role in the unusual shape of
Saturn Saturn is the sixth planet from the Sun and the second largest in the Solar System, after Jupiter. It is a gas giant, with an average radius of about 9 times that of Earth. It has an eighth the average density of Earth, but is over 95 tim ...
's moon Iapetus. Iapetus is noticeably flattened and oblate, indicating that it rotated significantly faster early in its history, with a rotation period possibly as short as 17 hours. Heating from 26Al could have provided enough heat in Iapetus to allow it to conform to this rapid rotation period, before the moon cooled and became too rigid to relax back into hydrostatic equilibrium. The presence of aluminium monofluoride molecule as the 26Al isotopologue in CK Vulpeculae, which is an unknown type of nova, constitutes the first solid evidence of an extrasolar radioactive molecule.


Aluminium-26 in the early Solar System

In considering the known melting of small planetary bodies in the early Solar System, H. C. Urey noted that the naturally occurring long-lived radioactive nuclei (40K, 238U, 235U and 232Th) were insufficient heat sources. He proposed that the heat sources from short lived nuclei from newly formed stars might be the source and identified 26Al as the most likely choice. This proposal was made well before the general problems of
stellar nucleosynthesis In astrophysics, stellar nucleosynthesis is the creation of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a ...
of the nuclei were known or understood. This conjecture was based on the discovery of 26Al in a Mg target by Simanton, Rightmire, Long & Kohman. Their search was undertaken because hitherto there was no known radioactive isotope of Al that might be useful as a tracer. Theoretical considerations suggested that a state of 26Al should exist. The life time of 26Al was not then known; it was only estimated between 104 and 106 years. The search for 26Al took place over many years, long after the discovery of the extinct radionuclide 129I which showed that contribution from stellar sources formed ~108 years before the Sun had contributed to the Solar System mix. The asteroidal materials that provide meteorite samples were long known to be from the early Solar System. The Allende meteorite, which fell in 1969, contained abundant calcium–aluminium-rich inclusions (CAIs). These are very refractory materials and were interpreted as being condensates from a hot solar nebula. then discovered that the oxygen in these objects was enhanced in 16O by ~5% while the 17O/18O was the same as terrestrial. This clearly showed a large effect in an abundant element that might be nuclear, possibly from a stellar source. These objects were then found to contain strontium with very low 87Sr/86Sr indicating that they were a few million years older than previously analyzed meteoritic material and that this type of material would merit a search for 26Al. 26Al is only present today in the Solar System materials as the result of cosmic reactions on unshielded materials at an extremely low level. Thus, any original 26Al in the early Solar System is now extinct. To establish the presence of 26Al in very ancient materials requires demonstrating that samples must contain clear excesses of 26Mg/24Mg which correlates with the ratio of 27Al/24Mg. The stable 27Al is then a surrogate for extinct 26Al. The different 27Al/24Mg ratios are coupled to different chemical phases in a sample and are the result of normal chemical separation processes associated with the growth of the crystals in the CAIs. Clear evidence of the presence of 26Al at an abundance ratio of 5×10−5 was shown by Lee et al. The value (26Al/27Al ~ 5) has now been generally established as the high value in early Solar System samples and has been generally used as a refined time scale chronometer for the early Solar System. Lower values imply a more recent time of formation. If this 26Al is the result of pre-solar stellar sources, then this implies a close connection in time between the formation of the Solar System and the production in some exploding star. Many materials which had been presumed to be very early (e.g. chondrules) appear to have formed a few million years later. Other extinct radioactive nuclei, which clearly had a stellar origin, were then being discovered. That 26Al was present in the interstellar medium as a major
gamma ray A gamma ray, also known as gamma radiation (symbol ), is a penetrating form of electromagnetic radiation arising from high energy interactions like the radioactive decay of atomic nuclei or astronomical events like solar flares. It consists o ...
source was not explored until the development of the high-energy astronomical observatory program. The HEAO-3 spacecraft with cooled Ge detectors allowed the clear detection of 1.808 MeV gamma lines from the central part of the galaxy from a distributed 26Al source. This represents a quasi steady state inventory corresponding to two solar masses of 26Al was distributed. This discovery was greatly expanded on by observations from the Compton Gamma Ray Observatory using the COMPTEL telescope in the galaxy. Subsequently, the 60Fe lines (1.173 MeV and 1.333 Mev) were also detected showing the relative rates of decays from 60Fe to 26Al to be 60Fe/26Al ~ 0.11. In pursuit of the carriers of 22Ne in the sludge produced by chemical destruction of some meteorites, carrier grains in micron size, acid-resistant ultra-refractory materials (e.g. C, SiC) were found by E. Anders & the Chicago group. The carrier grains were clearly shown to be circumstellar condensates from earlier stars and often contained very large enhancements in 26Mg/24Mg from the decay of 26Al with 26Al/27Al sometimes approaching 0.2. These studies on micron scale grains were possible as a result of the development of surface ion mass spectrometry at high mass resolution with a focused beam developed by G. Slodzian & R. Castaing with the CAMECA Co. The production of 26Al by
cosmic ray Cosmic rays or astroparticles are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the ...
interactions in unshielded materials is used as a monitor of the time of exposure to cosmic rays. The amounts are far below the initial inventory that is found in very early solar system debris.


Metastable states

Before 1954, the half-life of aluminium-26m was measured to be 6.3 seconds. After it was theorized that this could be the half-life of a metastable state (
isomer In chemistry, isomers are molecules or polyatomic ions with identical molecular formula – that is, the same number of atoms of each element (chemistry), element – but distinct arrangements of atoms in space. ''Isomerism'' refers to the exi ...
) of aluminium-26, the ground state was produced by bombardment of
magnesium-26 Magnesium (12Mg) naturally occurs in three stable isotopes: , , and . There are 19 radioisotopes that have been discovered, ranging from to (with the exception of ). The longest-lived radioisotope is with a half-life of . The lighter isotopes m ...
and magnesium-25 with deuterons in the
cyclotron A cyclotron is a type of particle accelerator invented by Ernest Lawrence in 1929–1930 at the University of California, Berkeley, and patented in 1932. Lawrence, Ernest O. ''Method and apparatus for the acceleration of ions'', filed: Januar ...
of the
University of Pittsburgh The University of Pittsburgh (Pitt) is a Commonwealth System of Higher Education, state-related research university in Pittsburgh, Pennsylvania, United States. The university is composed of seventeen undergraduate and graduate schools and colle ...
. The first half-life was determined to be in the range of 106 years. The Fermi
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron ...
half-life of the aluminium-26 metastable state is of interest in the experimental testing of two components of the
Standard Model The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the unive ...
, namely, the conserved-vector-current hypothesis and the required unitarity of the Cabibbo–Kobayashi–Maskawa matrix. The decay is superallowed. The 2011 measurement of the half life of 26mAl is milliseconds.


See also

* Isotopes of aluminium * * Surface exposure dating


References

{{Authority control Isotopes of aluminium Positron emitters Radionuclides used in radiometric dating