HOME

TheInfoList



OR:

In
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, a hyperplane is a subspace whose
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coord ...
is one less than that of its ''
ambient space An ambient space or ambient configuration space is the space surrounding an object. While the ambient space and hodological space are both considered ways of perceiving penetrable space, the former perceives space as ''navigable'', while the latt ...
''. For example, if a space is 3-dimensional then its hyperplanes are the 2-dimensional
planes Plane(s) most often refers to: * Aero- or airplane, a powered, fixed-wing aircraft * Plane (geometry), a flat, 2-dimensional surface Plane or planes may also refer to: Biology * Plane (tree) or ''Platanus'', wetland native plant * ''Planes' ...
, while if the space is 2-dimensional, its hyperplanes are the 1-dimensional lines. This notion can be used in any general
space Space is the boundless three-dimensional extent in which objects and events have relative position and direction. In classical physics, physical space is often conceived in three linear dimensions, although modern physicists usually consi ...
in which the concept of the dimension of a subspace is defined. In different settings, hyperplanes may have different properties. For instance, a hyperplane of an -dimensional
affine space In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related ...
is a flat
subset In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ...
with dimension and it separates the space into two half spaces. While a hyperplane of an -dimensional
projective space In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet ''at infinity''. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally ...
does not have this property. The difference in dimension between a subspace and its ambient space is known as the
codimension In mathematics, codimension is a basic geometric idea that applies to subspaces in vector spaces, to submanifolds in manifolds, and suitable subsets of algebraic varieties. For affine and projective algebraic varieties, the codimension equals ...
of with respect to . Therefore, a
necessary and sufficient condition In logic and mathematics, necessity and sufficiency are terms used to describe a conditional or implicational relationship between two statements. For example, in the conditional statement: "If then ", is necessary for , because the truth of ...
for to be a hyperplane in is for to have codimension one in .


Technical description

In
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, a hyperplane of an ''n''-dimensional space ''V'' is a subspace of dimension ''n'' − 1, or equivalently, of
codimension In mathematics, codimension is a basic geometric idea that applies to subspaces in vector spaces, to submanifolds in manifolds, and suitable subsets of algebraic varieties. For affine and projective algebraic varieties, the codimension equals ...
 1 in ''V''. The space ''V'' may be a
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidea ...
or more generally an
affine space In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related ...
, or a
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but can ...
or a
projective space In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet ''at infinity''. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally ...
, and the notion of hyperplane varies correspondingly since the definition of subspace differs in these settings; in all cases however, any hyperplane can be given in
coordinate In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is sign ...
s as the solution of a single (due to the "codimension 1" constraint)
algebraic equation In mathematics, an algebraic equation or polynomial equation is an equation of the form :P = 0 where ''P'' is a polynomial with coefficients in some field, often the field of the rational numbers. For many authors, the term ''algebraic equation'' ...
of degree 1. If ''V'' is a vector space, one distinguishes "vector hyperplanes" (which are
linear subspace In mathematics, and more specifically in linear algebra, a linear subspace, also known as a vector subspaceThe term ''linear subspace'' is sometimes used for referring to flats and affine subspaces. In the case of vector spaces over the reals, l ...
s, and therefore must pass through the origin) and "affine hyperplanes" (which need not pass through the origin; they can be obtained by
translation Translation is the communication of the meaning of a source-language text by means of an equivalent target-language text. The English language draws a terminological distinction (which does not exist in every language) between ''transla ...
of a vector hyperplane). A hyperplane in a Euclidean space separates that space into two half spaces, and defines a
reflection Reflection or reflexion may refer to: Science and technology * Reflection (physics), a common wave phenomenon ** Specular reflection, reflection from a smooth surface *** Mirror image, a reflection in a mirror or in water ** Signal reflection, in ...
that fixes the hyperplane and interchanges those two half spaces.


Special types of hyperplanes

Several specific types of hyperplanes are defined with properties that are well suited for particular purposes. Some of these specializations are described here.


Affine hyperplanes

An affine hyperplane is an
affine subspace In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related ...
of
codimension In mathematics, codimension is a basic geometric idea that applies to subspaces in vector spaces, to submanifolds in manifolds, and suitable subsets of algebraic varieties. For affine and projective algebraic varieties, the codimension equals ...
1 in an
affine space In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related ...
. In
Cartesian coordinates A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in ...
, such a hyperplane can be described with a single
linear equation In mathematics, a linear equation is an equation that may be put in the form a_1x_1+\ldots+a_nx_n+b=0, where x_1,\ldots,x_n are the variables (or unknowns), and b,a_1,\ldots,a_n are the coefficients, which are often real numbers. The coeffici ...
of the following form (where at least one of the a_is is non-zero and b is an arbitrary constant): :a_1x_1 + a_2x_2 + \cdots + a_nx_n = b.\ In the case of a real affine space, in other words when the coordinates are real numbers, this affine space separates the space into two half-spaces, which are the connected components of the
complement A complement is something that completes something else. Complement may refer specifically to: The arts * Complement (music), an interval that, when added to another, spans an octave ** Aggregate complementation, the separation of pitch-clas ...
of the hyperplane, and are given by the
inequalities Inequality may refer to: Economics * Attention inequality, unequal distribution of attention across users, groups of people, issues in etc. in attention economy * Economic inequality, difference in economic well-being between population groups * ...
:a_1x_1 + a_2x_2 + \cdots + a_nx_n < b\ and :a_1x_1 + a_2x_2 + \cdots + a_nx_n > b.\ As an example, a point is a hyperplane in 1-dimensional space, a line is a hyperplane in 2-dimensional space, and a plane is a hyperplane in 3-dimensional space. A line in 3-dimensional space is not a hyperplane, and does not separate the space into two parts (the complement of such a line is connected). Any hyperplane of a Euclidean space has exactly two unit normal vectors. Affine hyperplanes are used to define decision boundaries in many
machine learning Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 'learn', that is, methods that leverage data to improve performance on some set of tasks. It is seen as a part of artificial intelligence. Machine ...
algorithms such as linear-combination (oblique)
decision trees A decision tree is a decision support tool that uses a tree-like model of decisions and their possible consequences, including chance event outcomes, resource costs, and utility. It is one way to display an algorithm that only contains cond ...
, and
perceptron In machine learning, the perceptron (or McCulloch-Pitts neuron) is an algorithm for supervised learning of binary classifiers. A binary classifier is a function which can decide whether or not an input, represented by a vector of numbers, belon ...
s.


Vector hyperplanes

In a vector space, a vector hyperplane is a subspace of codimension 1, only possibly shifted from the origin by a vector, in which case it is referred to as a flat. Such a hyperplane is the solution of a single
linear equation In mathematics, a linear equation is an equation that may be put in the form a_1x_1+\ldots+a_nx_n+b=0, where x_1,\ldots,x_n are the variables (or unknowns), and b,a_1,\ldots,a_n are the coefficients, which are often real numbers. The coeffici ...
.


Projective hyperplanes

Projective hyperplanes, are used in
projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, ...
. A projective subspace is a set of points with the property that for any two points of the set, all the points on the line determined by the two points are contained in the set. Projective geometry can be viewed as
affine geometry In mathematics, affine geometry is what remains of Euclidean geometry when ignoring (mathematicians often say "forgetting") the metric notions of distance and angle. As the notion of '' parallel lines'' is one of the main properties that is ...
with
vanishing point A vanishing point is a point on the image plane of a perspective drawing where the two-dimensional perspective projections of mutually parallel lines in three-dimensional space appear to converge. When the set of parallel lines is perpendicul ...
s (points at infinity) added. An affine hyperplane together with the associated points at infinity forms a projective hyperplane. One special case of a projective hyperplane is the infinite or ideal hyperplane, which is defined with the set of all points at infinity. In projective space, a hyperplane does not divide the space into two parts; rather, it takes two hyperplanes to separate points and divide up the space. The reason for this is that the space essentially "wraps around" so that both sides of a lone hyperplane are connected to each other.


Applications

In
convex geometry In mathematics, convex geometry is the branch of geometry studying convex sets, mainly in Euclidean space. Convex sets occur naturally in many areas: computational geometry, convex analysis, discrete geometry, functional analysis, geometry of ...
, two disjoint
convex set In geometry, a subset of a Euclidean space, or more generally an affine space over the reals, is convex if, given any two points in the subset, the subset contains the whole line segment that joins them. Equivalently, a convex set or a convex ...
s in n-dimensional Euclidean space are separated by a hyperplane, a result called the
hyperplane separation theorem In geometry, the hyperplane separation theorem is a theorem about disjoint convex sets in ''n''-dimensional Euclidean space. There are several rather similar versions. In one version of the theorem, if both these sets are closed and at least one ...
. In
machine learning Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 'learn', that is, methods that leverage data to improve performance on some set of tasks. It is seen as a part of artificial intelligence. Machine ...
, hyperplanes are a key tool to create
support vector machine In machine learning, support vector machines (SVMs, also support vector networks) are supervised learning models with associated learning algorithms that analyze data for classification and regression analysis. Developed at AT&T Bell Laborat ...
s for such tasks as
computer vision Computer vision is an interdisciplinary scientific field that deals with how computers can gain high-level understanding from digital images or videos. From the perspective of engineering, it seeks to understand and automate tasks that the human ...
and
natural language processing Natural language processing (NLP) is an interdisciplinary subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language, in particular how to program computers to proc ...
. The datapoint and its predicted value via a linear model is a hyperplane.


Dihedral angles

The
dihedral angle A dihedral angle is the angle between two intersecting planes or half-planes. In chemistry, it is the clockwise angle between half-planes through two sets of three atoms, having two atoms in common. In solid geometry, it is defined as the un ...
between two non-parallel hyperplanes of a Euclidean space is the angle between the corresponding
normal vector In geometry, a normal is an object such as a line, ray, or vector that is perpendicular to a given object. For example, the normal line to a plane curve at a given point is the (infinite) line perpendicular to the tangent line to the curve ...
s. The product of the transformations in the two hyperplanes is a
rotation Rotation, or spin, is the circular movement of an object around a '' central axis''. A two-dimensional rotating object has only one possible central axis and can rotate in either a clockwise or counterclockwise direction. A three-dimensional ...
whose axis is the subspace of codimension 2 obtained by intersecting the hyperplanes, and whose angle is twice the angle between the hyperplanes.


Support hyperplanes

A hyperplane H is called a "support" hyperplane of the polyhedron P if P is contained in one of the two closed half-spaces bounded by H and H\cap P \neq \varnothing.Polytopes, Rings and K-Theory by Bruns-Gubeladze The intersection of P and H is defined to be a "face" of the polyhedron. The theory of polyhedra and the dimension of the faces are analyzed by looking at these intersections involving hyperplanes.


See also

*
Hypersurface In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension , which is embedded in an ambient space of dimension , generally a Euclidea ...
*
Decision boundary __NOTOC__ In a statistical-classification problem with two classes, a decision boundary or decision surface is a hypersurface that partitions the underlying vector space into two sets, one for each class. The classifier will classify all the point ...
*
Ham sandwich theorem In mathematical measure theory, for every positive integer the ham sandwich theorem states that given measurable "objects" in -dimensional Euclidean space, it is possible to divide each one of them in half (with respect to their measure, e.g. ...
* Arrangement of hyperplanes *
Supporting hyperplane theorem In geometry, a supporting hyperplane of a set S in Euclidean space \mathbb R^n is a hyperplane that has both of the following two properties: * S is entirely contained in one of the two closed half-spaces bounded by the hyperplane, * S has at leas ...


References

* * Charles W. Curtis (1968) ''Linear Algebra'', page 62,
Allyn & Bacon Allyn & Bacon, founded in 1868, is a higher education textbook publisher in the areas of education, humanities and social sciences. It is an imprint of Pearson Education, the world's largest education publishing and technology company which is par ...
, Boston. *
Heinrich Guggenheimer Heinrich Walter Guggenheimer (July 21, 1924 – March 4, 2021) was a German-born Swiss-American mathematician who has contributed to knowledge in differential geometry, topology, algebraic geometry, and convexity. He has also contributed volume ...
(1977) ''Applicable Geometry'', page 7, Krieger, Huntington . * Victor V. Prasolov & VM Tikhomirov (1997,2001) ''Geometry'', page 22, volume 200 in ''Translations of Mathematical Monographs'',
American Mathematical Society The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meeting ...
, Providence .


External links

* * {{Dimension topics Euclidean geometry Affine geometry Linear algebra Projective geometry Multi-dimensional geometry