HOME

TheInfoList



OR:

An acoustic rheometer employs a piezo-electric
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macro ...
that can easily launch a successive
wave In physics, mathematics, and related fields, a wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities. Waves can be periodic, in which case those quantities oscillate repeatedly about an equilibrium (re ...
of extensions and contractions into the
fluid In physics, a fluid is a liquid, gas, or other material that continuously deforms (''flows'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are substances which cannot resist any shear ...
. It applies an oscillating extensional stress to the system. System response can be interpreted in terms of extensional rheology. :This interpretation is based on a link between shear rheology, extensional rheology and
acoustics Acoustics is a branch of physics that deals with the study of mechanical waves in gases, liquids, and solids including topics such as vibration, sound, ultrasound and infrasound. A scientist who works in the field of acoustics is an acousticia ...
. Relationship between these scientific disciplines was described in details by Litovitz and Davis in 1964. It is well known that properties of
viscoelastic In materials science and continuum mechanics, viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials, like water, resist shear flow and strain linearly ...
fluid are characterised in shear rheology with a
shear modulus In materials science, shear modulus or modulus of rigidity, denoted by ''G'', or sometimes ''S'' or ''μ'', is a measure of the elastic shear stiffness of a material and is defined as the ratio of shear stress to the shear strain: :G \ \stackre ...
''G'', which links
shear stress Shear stress, often denoted by ( Greek: tau), is the component of stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. '' Normal stress'', on ...
''Tij'' and shear strain ''Sij'' :: There is similar linear relationship in extensional rheology between extensional stress ''P'', extensional strain ''S'' and extensional modulus ''K'': :: Detail theoretical analysis indicates that propagation of
sound In physics, sound is a vibration that propagates as an acoustic wave, through a transmission medium such as a gas, liquid or solid. In human physiology and psychology, sound is the ''reception'' of such waves and their ''perception'' by ...
or
ultrasound Ultrasound is sound waves with frequencies higher than the upper audible limit of human hearing. Ultrasound is not different from "normal" (audible) sound in its physical properties, except that humans cannot hear it. This limit varies ...
through a viscoelastic fluid depends on both shear modulus ''G'' and extensional modulus ''K'',.Morse, P. M. and Ingard, K. U. "Theoretical Acoustics", Princeton University Press (1986)Dukhin, A.S. and Goetz, P.J
"Characterization of liquids, nano- and micro- particulates and porous bodies using Ultrasound"
Elsevier, 2017
It is convenient to introduce a combined
longitudinal modulus There are two kinds of seismic body waves in solids, ''pressure waves'' (P-waves) and ''shear waves.'' In linear elasticity, the P-wave modulus M, also known as the longitudinal modulus, or the constrained modulus, is one of the elastic moduli avail ...
''M'': :: M =M' + M''=K + \fracG There are simple equations that express longitudinal modulus in terms of acoustic properties, sound speed ''V'' and
attenuation In physics, attenuation (in some contexts, extinction) is the gradual loss of flux intensity through a medium. For instance, dark glasses attenuate sunlight, lead attenuates X-rays, and water and air attenuate both light and sound at var ...
α :: M'= \rho \cdot V^2 :: M''= \frac Acoustic rheometer measures sound speed and
attenuation In physics, attenuation (in some contexts, extinction) is the gradual loss of flux intensity through a medium. For instance, dark glasses attenuate sunlight, lead attenuates X-rays, and water and air attenuate both light and sound at var ...
of
ultrasound Ultrasound is sound waves with frequencies higher than the upper audible limit of human hearing. Ultrasound is not different from "normal" (audible) sound in its physical properties, except that humans cannot hear it. This limit varies ...
for a set of
frequencies Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is e ...
in the
megahertz The hertz (symbol: Hz) is the unit of frequency in the International System of Units (SI), equivalent to one event (or cycle) per second. The hertz is an SI derived unit whose expression in terms of SI base units is s−1, meaning that one ...
range. These measurable parameters can be converted into real and imaginary components of ''longitudinal modulus''. :Sound speed determines M', which is a measure of system elasticity. It can be converted into fluid
compressibility In thermodynamics and fluid mechanics, the compressibility (also known as the coefficient of compressibility or, if the temperature is held constant, the isothermal compressibility) is a measure of the instantaneous relative volume change of a f ...
. :Attenuation determines M", which is a measure of viscous properties, energy
dissipation In thermodynamics, dissipation is the result of an irreversible process that takes place in homogeneous thermodynamic systems. In a dissipative process, energy ( internal, bulk flow kinetic, or system potential) transforms from an initial form to ...
. This parameter can be considered as extensional viscosity :In the case of Newtonian liquid attenuation yields information on the volume viscosity. Stokes' law (sound attenuation) provides relationship among
attenuation In physics, attenuation (in some contexts, extinction) is the gradual loss of flux intensity through a medium. For instance, dark glasses attenuate sunlight, lead attenuates X-rays, and water and air attenuate both light and sound at var ...
,
dynamic viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the int ...
and volume viscosity of the Newtonian fluid. This type of rheometer works at much higher frequencies than others. It is suitable for studying effects with much shorter relaxation times than any other rheometer.


References


See also

*
Rheology Rheology (; ) is the study of the flow of matter, primarily in a fluid ( liquid or gas) state, but also as "soft solids" or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an ap ...
{{DEFAULTSORT:Acoustic Rheometer Measuring instruments