Zeroth law of thermodynamics
   HOME

TheInfoList



OR:

The zeroth law of thermodynamics is one of the four principal
laws of thermodynamics The laws of thermodynamics are a set of scientific laws which define a group of physical quantities, such as temperature, energy, and entropy, that characterize thermodynamic systems in thermodynamic equilibrium. The laws also use various param ...
. It provides an independent definition of
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
without reference to
entropy Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
, which is defined in the second law. The law was established by
Ralph H. Fowler Sir Ralph Howard Fowler (17 January 1889 – 28 July 1944) was an English physicist, physical chemist, and astronomer. Education Ralph H. Fowler was born at Roydon, Essex, Roydon, Essex, on 17 January 1889 to Howard Fowler, from Burnham-on-Sea, ...
in the 1930s, long after the first, second, and third laws had been widely recognized. The zeroth law states that if two
thermodynamic system A thermodynamic system is a body of matter and/or radiation separate from its surroundings that can be studied using the laws of thermodynamics. Thermodynamic systems can be passive and active according to internal processes. According to inter ...
s are both in thermal equilibrium with a third system, then the two systems are in thermal equilibrium with each other.Buchdahl, H.A. (1966). ''The Concepts of Classical Thermodynamics'', Cambridge University Press, Cambridge, p. 29: "... if each of two systems is in equilibrium with a third system then they are in equilibrium with each other." Two systems are said to be in thermal equilibrium if they are linked by a wall permeable only to heat, and they do not change over time. Another formulation by
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish physicist and mathematician who was responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism an ...
is "All heat is of the same kind". Another statement of the law is "All
diathermal wall In thermodynamics, a diathermal wall between two thermodynamic systems allows heat transfer but does not allow transfer of matter across it. The diathermal wall is important because, in thermodynamics, it is customary to assume ''a priori'', for ...
s are equivalent". The zeroth law is important for the mathematical formulation of thermodynamics. It makes the relation of thermal equilibrium between systems an
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equ ...
, which can represent equality of some
quantity Quantity or amount is a property that can exist as a multitude or magnitude, which illustrate discontinuity and continuity. Quantities can be compared in terms of "more", "less", or "equal", or by assigning a numerical value multiple of a u ...
associated with each system. A quantity that is the same for two systems, if they can be placed in thermal equilibrium with each other, is a scale of temperature. The zeroth law is needed for the definition of such scales, and justifies the use of practical thermometers.


Equivalence relation

A
thermodynamic system A thermodynamic system is a body of matter and/or radiation separate from its surroundings that can be studied using the laws of thermodynamics. Thermodynamic systems can be passive and active according to internal processes. According to inter ...
is by definition in its own state of internal thermodynamic equilibrium, that is to say, there is no change in its observable state (i.e.
macrostate In statistical mechanics, a microstate is a specific configuration of a system that describes the precise positions and momenta of all the individual particles or components that make up the system. Each microstate has a certain probability of ...
) over time and no flows occur in it. One precise statement of the zeroth law is that the relation of thermal equilibrium is an
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equ ...
on pairs of thermodynamic systems. In other words, the set of all systems each in its own state of internal thermodynamic equilibrium may be divided into subsets in which every system belongs to one and only one subset, and is in thermal equilibrium with every other member of that subset, and is not in thermal equilibrium with a member of any other subset. This means that a unique "tag" can be assigned to every system, and if the "tags" of two systems are the same, they are in thermal equilibrium with each other, and if different, they are not. This property is used to justify the use of empirical temperature as a tagging system. Empirical temperature provides further relations of thermally equilibrated systems, such as order and continuity with regard to "hotness" or "coldness", but these are not implied by the standard statement of the zeroth law. If it is defined that a thermodynamic system is in thermal equilibrium with itself (i.e., thermal equilibrium is reflexive), then the zeroth law may be stated as follows: This statement asserts that thermal equilibrium is a left-
Euclidean relation In mathematics, Euclidean relations are a class of binary relations that formalize ":wikisource:Page:First six books of the elements of Euclid 1847 Byrne.djvu/26, Axiom 1" in Euclid's Elements, Euclid's ''Elements'': "Magnitudes which are equal to t ...
between thermodynamic systems. If we also define that every thermodynamic system is in thermal equilibrium with itself, then thermal equilibrium is also a
reflexive relation In mathematics, a binary relation R on a set X is reflexive if it relates every element of X to itself. An example of a reflexive relation is the relation " is equal to" on the set of real numbers, since every real number is equal to itself. A ...
.
Binary relation In mathematics, a binary relation associates some elements of one Set (mathematics), set called the ''domain'' with some elements of another set called the ''codomain''. Precisely, a binary relation over sets X and Y is a set of ordered pairs ...
s that are both reflexive and Euclidean are equivalence relations. Thus, again implicitly assuming reflexivity, the zeroth law is therefore often expressed as a right-Euclidean statement: One consequence of an equivalence relationship is that the equilibrium relationship is symmetric: If ''A'' is in thermal equilibrium with ''B'', then ''B'' is in thermal equilibrium with ''A''. Thus, the two systems are in thermal equilibrium with each other, or they are in mutual equilibrium. Another consequence of equivalence is that thermal equilibrium is described as a
transitive relation In mathematics, a binary relation on a set (mathematics), set is transitive if, for all elements , , in , whenever relates to and to , then also relates to . Every partial order and every equivalence relation is transitive. For example ...
: A reflexive, transitive relation does not guarantee an equivalence relationship. For the above statement to be true, ''both'' reflexivity ''and'' symmetry must be implicitly assumed. It is the Euclidean relationships which apply directly to thermometry. An ideal thermometer is a thermometer which does not measurably change the state of the system it is measuring. Assuming that the unchanging reading of an ideal thermometer is a valid tagging system for the equivalence classes of a set of equilibrated thermodynamic systems, then the systems are in thermal equilibrium, if a thermometer gives the same reading for each system. If the system are thermally connected, no subsequent change in the state of either one can occur. If the readings are different, then thermally connecting the two systems causes a change in the states of both systems. The zeroth law provides no information regarding this final reading.


Foundation of temperature

Nowadays, there are two nearly separate concepts of temperature, the thermodynamic concept, and that of the kinetic theory of gases and other materials. The zeroth law belongs to the thermodynamic concept, but this is no longer the primary international definition of temperature. The current primary international definition of temperature is in terms of the kinetic energy of freely moving microscopic particles such as molecules, related to temperature through the
Boltzmann constant The Boltzmann constant ( or ) is the proportionality factor that relates the average relative thermal energy of particles in a ideal gas, gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin (K) and the ...
k_. The present article is about the thermodynamic concept, not about the kinetic theory concept. The zeroth law establishes thermal equilibrium as an equivalence relationship. An equivalence relationship on a set (such as the set of all systems each in its own state of internal thermodynamic equilibrium) divides that set into a collection of distinct subsets ("disjoint subsets") where any member of the set is a member of one and only one such subset. In the case of the zeroth law, these subsets consist of systems which are in mutual equilibrium. This partitioning allows any member of the subset to be uniquely "tagged" with a label identifying the subset to which it belongs. Although the labeling may be quite arbitrary, temperature is just such a labeling process which uses the real number system for tagging. The zeroth law justifies the use of suitable thermodynamic systems as
thermometer A thermometer is a device that measures temperature (the hotness or coldness of an object) or temperature gradient (the rates of change of temperature in space). A thermometer has two important elements: (1) a temperature sensor (e.g. the bulb ...
s to provide such a labeling, which yield any number of possible empirical temperature scales, and justifies the use of the
second law of thermodynamics The second law of thermodynamics is a physical law based on Universal (metaphysics), universal empirical observation concerning heat and Energy transformation, energy interconversions. A simple statement of the law is that heat always flows spont ...
to provide an absolute, or
thermodynamic temperature Thermodynamic temperature, also known as absolute temperature, is a physical quantity which measures temperature starting from absolute zero, the point at which particles have minimal thermal motion. Thermodynamic temperature is typically expres ...
scale. Such temperature scales bring additional continuity and ordering (i.e., "hot" and "cold") properties to the concept of temperature. In the space of thermodynamic parameters, zones of constant temperature form a surface, that provides a natural order of nearby surfaces. One may therefore construct a global temperature function that provides a continuous ordering of states. The dimensionality of a surface of constant temperature is one less than the number of thermodynamic parameters, thus, for an ideal gas described with three thermodynamic parameters ''P'', ''V'' and ''N'', it is a two-
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coo ...
al surface. For example, if two systems of ideal gases are in joint thermodynamic equilibrium across an immovable diathermal wall, then = where ''Pi'' is the pressure in the ''i''th system, ''Vi'' is the volume, and ''Ni'' is the amount (in moles, or simply the number of atoms) of gas. The surface = constant defines surfaces of equal thermodynamic temperature, and one may label defining ''T'' so that = ''RT'', where ''R'' is some constant. These systems can now be used as a thermometer to calibrate other systems. Such systems are known as "ideal gas thermometers". In a sense, focused on the zeroth law, there is only one kind of diathermal wall or one kind of heat, as expressed by Maxwell's dictum that "All heat is of the same kind". But in another sense, heat is transferred in different ranks, as expressed by Arnold Sommerfeld's dictum "Thermodynamics investigates the conditions that govern the transformation of heat into work. It teaches us to recognize temperature as the measure of the work-value of heat. Heat of higher temperature is richer, is capable of doing more work. Work may be regarded as heat of an infinitely high temperature, as unconditionally available heat." This is why temperature is the particular variable indicated by the zeroth law's statement of equivalence.


Dependence on the existence of walls permeable only to heat

In
Constantin Carathéodory Constantin Carathéodory (; 13 September 1873 – 2 February 1950) was a Greeks, Greek mathematician who spent most of his professional career in Germany. He made significant contributions to real and complex analysis, the calculus of variations, ...
's (1909) theory, it is postulated that there exist walls "permeable only to heat", though heat is not explicitly defined in that paper. This postulate is a physical postulate of existence. It does not say that there is only one kind of heat. This paper of Carathéodory states as proviso 4 of its account of such walls: "Whenever each of the systems ''S''1 and ''S''2 is made to reach equilibrium with a third system ''S''3 under identical conditions, systems ''S''1 and ''S''2 are in mutual equilibrium". It is the function of this statement in the paper, not there labeled as the zeroth law, to provide not only for the existence of transfer of energy other than by work or transfer of matter, but further to provide that such transfer is unique in the sense that there is only one kind of such wall, and one kind of such transfer. This is signaled in the postulate of this paper of Carathéodory that precisely one non-deformation variable is needed to complete the specification of a thermodynamic state, beyond the necessary deformation variables, which are not restricted in number. It is therefore not exactly clear what Carathéodory means when in the introduction of this paper he writes
It is possible to develop the whole theory without assuming the existence of heat, that is of a quantity that is of a different nature from the normal mechanical quantities.
It is the opinion of Elliott H. Lieb and Jakob Yngvason (1999) that the derivation from statistical mechanics of the law of entropy increase is a goal that has so far eluded the deepest thinkers. Thus the idea remains open to consideration that the existence of heat and temperature are needed as coherent primitive concepts for thermodynamics, as expressed, for example, by Maxwell and
Max Planck Max Karl Ernst Ludwig Planck (; ; 23 April 1858 – 4 October 1947) was a German Theoretical physics, theoretical physicist whose discovery of energy quantum, quanta won him the Nobel Prize in Physics in 1918. Planck made many substantial con ...
. On the other hand, Planck (1926) clarified how the second law can be stated without reference to heat or temperature, by referring to the irreversible and universal nature of friction in natural thermodynamic processes.


History

Writing long before the term "zeroth law" was coined, in 1871 Maxwell discussed at some length ideas which he summarized by the words "All heat is of the same kind". Modern theorists sometimes express this idea by postulating the existence of a unique one-dimensional ''hotness manifold'', into which every proper temperature scale has a monotonic mapping. This may be expressed by the statement that there is only one kind of temperature, regardless of the variety of scales in which it is expressed. Another modern expression of this idea is that "All diathermal walls are equivalent". This might also be expressed by saying that there is precisely one kind of non-mechanical, non-matter-transferring contact equilibrium between thermodynamic systems. According to Sommerfeld,
Ralph H. Fowler Sir Ralph Howard Fowler (17 January 1889 – 28 July 1944) was an English physicist, physical chemist, and astronomer. Education Ralph H. Fowler was born at Roydon, Essex, Roydon, Essex, on 17 January 1889 to Howard Fowler, from Burnham-on-Sea, ...
coined the term ''zeroth law of thermodynamics'' while discussing the 1935 text by
Meghnad Saha Meghnad Saha (6 October 1893 – 16 February 1956) was an Indian astrophysicist and politician who helped devise the theory of Thermal ionization, thermal ionisation. His Saha ionization equation, Saha ionisation equation allowed astronomers to ...
and B.N. Srivastava. They write on page 1 that "every physical quantity must be measurable in numerical terms". They presume that temperature is a physical quantity and then deduce the statement "If a body is in temperature equilibrium with two bodies and , then and themselves are in temperature equilibrium with each other". Then they italicize a self-standing paragraph, as if to state their basic postulate: They do not themselves here use the phrase "zeroth law of thermodynamics". There are very many statements of these same physical ideas in the physics literature long before this text, in very similar language. What was new here was just the label ''zeroth law of thermodynamics''. Fowler & Guggenheim (1936/1965) wrote of the zeroth law as follows: They then proposed that The first sentence of this present article is a version of this statement. It is not explicitly evident in the existence statement of Fowler and Edward A. Guggenheim that temperature refers to a unique attribute of a state of a system, such as is expressed in the idea of the hotness manifold. Also their statement refers explicitly to statistical mechanical assemblies, not explicitly to macroscopic thermodynamically defined systems.


References


Further reading

* {{DEFAULTSORT:Zeroth Law Of Thermodynamics 0