HOME

TheInfoList



OR:

Zona pellucida sperm-binding protein 3, also known as zona pellucida glycoprotein 3 (Zp-3) or the sperm receptor, is a ZP module-containing
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
that in humans is encoded by the ''ZP3''
gene In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
. ZP3 is the glycoprotein in the
zona pellucida The ''zona pellucida'' (Latin meaning "transparent zone") is the specialized area surrounding mammalian oocytes (eggs). It is also known as an egg coat. The ''zona pellucida'' is essential for oocyte growth and fertilization. The ''zona pelluc ...
most important for inducting the
acrosome reaction For fertilization to happen between a sperm and egg cell, a sperm must first fuse with the plasma membrane and then penetrate the female egg cell to fertilize it. While the fusion of the sperm cell with the egg cell's plasma membrane is relatively ...
of
sperm Sperm (: sperm or sperms) is the male reproductive Cell (biology), cell, or gamete, in anisogamous forms of sexual reproduction (forms in which there is a larger, female reproductive cell and a smaller, male one). Animals produce motile sperm ...
cells at the beginning of
fertilization Fertilisation or fertilization (see American and British English spelling differences#-ise, -ize (-isation, -ization), spelling differences), also known as generative fertilisation, syngamy and impregnation, is the fusion of gametes to give ...
.


Function

The zona pellucida (ZP) is a specialized extracellular matrix that surrounds the oocyte and early embryo. It is composed of three or four glycoproteins (ZP1-4) with various functions during oogenesis, fertilization and preimplantation development. The protein encoded by this gene is a major structural component of the ZP and functions in primary binding and stimulation of the sperm acrosome reaction. The nascent protein contains a N-terminal signal peptide sequence, a conserved "ZP domain" module, a consensus furin cleavage site (CFCS), a polymerization-blocking external hydrophobic patch (EHP), and a C-terminal transmembrane domain. Cleavage at the CFCS separates the mature protein from the EHP, allowing it to incorporate into nascent ZP filaments. A variation in the last exon of this gene has previously served as the basis for an additional ZP3 locus; however, sequence and literature review reveals that there is only one full-length ZP3 locus in the human genome. Another locus encoding a bipartite transcript designated POMZP3 contains a duplication of the last four exons of ZP3, including the above described variation, and maps closely to this gene. In mice, ZP3 (more specifically the portion in its exon 7) is the single ZP protein that is sufficient and necessary for sperm binding ''in vitro'', but is insufficient for fertilization ''in vivo''. In humans, ZP1, ZP3, and ZP4 all appear partially responsible for starting the acrosome reaction. Orthologs of these genes are found throughout Vertebrata. The western clawed frog appears to have two orthologs, and the sea lamprey has seven.


3D Structure

X-ray crystallographic studies of the N-terminal half of mammalian ZP3 () as well as its full-length avian homolog () revealed that the protein's ZP module consists of two immunoglobulin-like domains, ZP-N and ZP-C. The latter, which contains EHP as well as a ZP3-specific subdomain, interacts with the ZP-N domain of a second molecule to generate an antiparallel homodimeric arrangement required for protein secretion.


Mutations

The Zona Pellucida (ZP) is a complex matrix of glycoprotein that surrounds the oocyte and plays a crucial role in the attachment of sperm during reproduction. Ultimately, through the facilitation of sperm binding and the initiation of the acrosome reaction, the ZP proteins are essential to reproduction and have an important impact on fertility. Research through the Journal of Cellular and Molecular Medicine conducted experiments to determine the mechanisms surrounding possible mutations to the ZP gene and how they would impact fertility. By performing whole-exome sequencing they isolated a genome that had a mutation in the ZP3 and the ZP1 genes. They then transfected these genes into HeLa cell cultures and ran a variety of tests to isolate the consequences of these mutations. The authors wrote this regarding their results: “The results indicate that the mutations are involved in the reduced secretion of ZP1 and ZP3 and leading to connection failure of the ZP filaments in vitro. The data suggest a potential that the mutations may be involved in the lacking ZP phenotype, which need to be further investigated in vivo.” (Cao, Qiqi, et al.) It is clear that the ZP proteins are crucial to expressing a correct ZP phenotype in humans, in which all of the ZP proteins 1-4 are properly functioning. Without this interface of proper protein function, sperm binding is inhibited, and fertility is compromised.


References

Cao, Qiqi, et al. “Heterozygous Mutations in ZP1 and ZP3 Cause Formation ...” Journal of Cellular and Molecular Medicine, Wiley Online Library, 22 June 2020, onlinelibrary.wiley.com/doi/10.1111/jcmm.15482.


Further reading

* * * * * * * * * * * * * * * * * * * * * * *


External links

* {{NLM content