HOME

TheInfoList



OR:

X-ray scattering techniques are a family of non-destructive analytical techniques which reveal information about the crystal structure, chemical composition, and physical properties of materials and thin films. These techniques are based on observing the scattered intensity of an
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10 nanometers, corresponding to frequencies in the range 30  ...
beam hitting a sample as a function of incident and scattered angle, polarization, and wavelength or energy. Note that
X-ray diffraction X-ray crystallography is the experimental science determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract into many specific directions. By measuring the angles ...
is now often considered a sub-set of X-ray scattering, where the scattering is elastic and the scattering object is crystalline, so that the resulting pattern contains sharp spots analyzed by
X-ray crystallography X-ray crystallography is the experimental science determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract into many specific directions. By measuring the angles ...
(as in the Figure). However, both
scattering Scattering is a term used in physics to describe a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including ...
and
diffraction Diffraction is defined as the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a s ...
are related general phenomena and the distinction has not always existed. Thus Guinier's classic text from 1963 is titled "X-ray diffraction in Crystals, Imperfect Crystals and Amorphous Bodies" so 'diffraction' was clearly not restricted to crystals at that time.


Scattering techniques


Elastic scattering

* X-ray
diffraction Diffraction is defined as the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a s ...
or more specifically Wide-angle X-ray diffraction (WAXD) *
Small-angle X-ray scattering Small-angle X-ray scattering (SAXS) is a small-angle scattering technique by which nanoscale density differences in a sample can be quantified. This means that it can determine nanoparticle size distributions, resolve the size and shape of (monodis ...
(SAXS) probes structure in the nanometer to micrometer range by measuring scattering intensity at scattering angles 2θ close to 0°. *
X-ray reflectivity X-ray reflectivity (sometimes known as X-ray specular reflectivity, X-ray reflectometry, or XRR) is a surface-sensitive analytical technique used in chemistry, physics, and materials science to characterize surfaces, thin films and multilayers.J. ...
is an analytical technique for determining thickness, roughness, and density of single layer and multilayer thin films. * Wide-angle X-ray scattering (WAXS), a technique concentrating on scattering angles 2θ larger than 5°.


Inelastic X-ray scattering (IXS)

In IXS the energy and angle of inelastically scattered X-rays are monitored, giving the dynamic
structure factor In condensed matter physics and crystallography, the static structure factor (or structure factor for short) is a mathematical description of how a material scatters incident radiation. The structure factor is a critical tool in the interpretation ...
S(\mathbf,\omega). From this many properties of materials can be obtained, the specific property depending on the scale of the energy transfer. The table below, listing techniques, is adapted from. Inelastically scattered X-rays have intermediate phases and so in principle are not useful for
X-ray crystallography X-ray crystallography is the experimental science determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract into many specific directions. By measuring the angles ...
. In practice X-rays with small energy transfers are included with the diffraction spots due to elastic scattering, and X-rays with large energy transfers contribute to the background noise in the diffraction pattern. *


See also

*
Anomalous scattering Anomalous X-ray scattering (AXRS or XRAS) is a non-destructive determination technique within X-ray diffraction that makes use of the anomalous dispersion that occurs when a wavelength is selected that is in the vicinity of an absorption edge of one ...
*
Anomalous X-ray scattering Anomalous X-ray scattering (AXRS or XRAS) is a non-destructive determination technique within X-ray diffraction that makes use of the anomalous dispersion that occurs when a wavelength is selected that is in the vicinity of an absorption edge of one ...
*
Backscatter In physics, backscatter (or backscattering) is the reflection of waves, particles, or signals back to the direction from which they came. It is usually a diffuse reflection due to scattering, as opposed to specular reflection as from a mirror, ...
* Materials science *
Metallurgy Metallurgy is a domain of materials science and engineering that studies the physical and chemical behavior of metallic elements, their inter-metallic compounds, and their mixtures, which are known as alloys. Metallurgy encompasses both the s ...
*
Mineralogy Mineralogy is a subject of geology specializing in the scientific study of the chemistry, crystal structure, and physical (including optical) properties of minerals and mineralized artifacts. Specific studies within mineralogy include the pr ...
*
Rachinger correction In X-ray diffraction, the Rachinger correction is a method for accounting for the effect of an undesired K-alpha 2 peak in the energy spectrum. Ideally, diffraction measurements are made with X-rays of a single wavelength. Practically, the x-rays ...
*
Structure determination A chemical structure determination includes a chemist's specifying the molecular geometry and, when feasible and necessary, the electronic structure of the target molecule or other solid. Molecular geometry refers to the spatial arrangement of at ...
* Ultrafast x-ray *
X-rays An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10 nanometers, corresponding to frequencies in the range 30  ...
*
X-ray generator An X-ray generator is a device that produces X-rays. Together with an X-ray detector, it is commonly used in a variety of applications including medicine, X-ray fluorescence, electronic assembly inspection, and measurement of material thickne ...


References


External links

{{commons category, X-ray diffraction
Learning Crystallography

International Union of Crystallography



The International Centre for Diffraction Data (ICDD)

The British Crystallographic Association

Introduction to X-ray Diffraction
at
University of California, Santa Barbara The University of California, Santa Barbara (UC Santa Barbara or UCSB) is a public land-grant research university in Santa Barbara, California with 23,196 undergraduates and 2,983 graduate students enrolled in 2021–2022. It is part of the U ...
Laboratory techniques in condensed matter physics X-ray crystallography Materials science X-ray scattering