Waste heat
   HOME

TheInfoList



OR:

Waste heat is
heat In thermodynamics, heat is energy in transfer between a thermodynamic system and its surroundings by such mechanisms as thermal conduction, electromagnetic radiation, and friction, which are microscopic in nature, involving sub-atomic, ato ...
that is produced by a
machine A machine is a physical system that uses power to apply forces and control movement to perform an action. The term is commonly applied to artificial devices, such as those employing engines or motors, but also to natural biological macromol ...
, or other process that uses
energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
, as a byproduct of doing work. All such processes give off some waste heat as a fundamental result of the
laws of thermodynamics The laws of thermodynamics are a set of scientific laws which define a group of physical quantities, such as temperature, energy, and entropy, that characterize thermodynamic systems in thermodynamic equilibrium. The laws also use various param ...
. Waste heat has lower utility (or in thermodynamics lexicon a lower exergy or higher
entropy Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
) than the original energy source. Sources of waste heat include all manner of human activities, natural systems, and all organisms, for example,
incandescent light bulb An incandescent light bulb, also known as an incandescent lamp or incandescent light globe, is an electric light that produces illumination by Joule heating a #Filament, filament until it incandescence, glows. The filament is enclosed in a ...
s get hot, a refrigerator warms the room air, a building gets hot during peak hours, an
internal combustion engine An internal combustion engine (ICE or IC engine) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal comb ...
generates high-temperature exhaust gases, and electronic components get warm when in operation. Instead of being "wasted" by release into the ambient environment, sometimes waste heat (or cold) can be used by another process (such as using hot engine coolant to heat a vehicle), or a portion of heat that would otherwise be wasted can be reused in the same process if make-up heat is added to the system (as with heat recovery ventilation in a building). Thermal energy storage, which includes technologies both for short- and long-term retention of heat or cold, can create or improve the utility of waste heat (or cold). One example is waste heat from air conditioning machinery stored in a buffer tank to aid in night time heating. Another is seasonal thermal energy storage (STES) at a foundry in Sweden. The heat is stored in the bedrock surrounding a cluster of heat exchanger equipped boreholes, and is used for space heating in an adjacent factory as needed, even months later. An example of using STES to use natural waste heat is the Drake Landing Solar Community in
Alberta Alberta is a Provinces and territories of Canada, province in Canada. It is a part of Western Canada and is one of the three Canadian Prairies, prairie provinces. Alberta is bordered by British Columbia to its west, Saskatchewan to its east, t ...
, Canada, which, by using a cluster of boreholes in bedrock for interseasonal heat storage, obtains 97 percent of its year-round heat from solar thermal collectors on the garage roofs. Another STES application is storing winter cold underground, for summer air conditioning. On a biological scale, all organisms reject waste heat as part of their metabolic processes, and will die if the ambient temperature is too high to allow this. Anthropogenic waste heat can contribute to the
urban heat island Urban areas usually experience the urban heat island (UHI) effect; that is, they are significantly warmer than surrounding rural areas. The temperature difference is usually larger at night than during the day, and is most apparent when winds ar ...
effect. The biggest point sources of waste heat originate from machines (such as electrical generators or industrial processes, such as steel or glass production) and heat loss through building envelopes. The burning of transport fuels is a major contribution to waste heat.


Conversion of energy

Machines converting energy contained in fuels to
mechanical work In science, work is the energy transferred to or from an object via the application of force along a displacement. In its simplest form, for a constant force aligned with the direction of motion, the work equals the product of the force stre ...
or electric energy produce heat as a by-product.


Sources

In the majority of applications, energy is required in multiple forms. These energy forms typically include some combination of
heating, ventilation, and air conditioning Heating, ventilation, and air conditioning (HVAC ) is the use of various technologies to control the temperature, humidity, and purity of the air in an enclosed space. Its goal is to provide thermal comfort and acceptable indoor air quality. H ...
,
mechanical energy In physical sciences, mechanical energy is the sum of macroscopic potential and kinetic energies. The principle of conservation of mechanical energy states that if an isolated system is subject only to conservative forces, then the mechanical ...
and
electric power Electric power is the rate of transfer of electrical energy within a electric circuit, circuit. Its SI unit is the watt, the general unit of power (physics), power, defined as one joule per second. Standard prefixes apply to watts as with oth ...
. Often, these additional forms of energy are produced by a
heat engine A heat engine is a system that transfers thermal energy to do mechanical or electrical work. While originally conceived in the context of mechanical energy, the concept of the heat engine has been applied to various other kinds of energy, pa ...
running on a source of high-temperature heat. A heat engine can never have perfect efficiency, according to the
second law of thermodynamics The second law of thermodynamics is a physical law based on Universal (metaphysics), universal empirical observation concerning heat and Energy transformation, energy interconversions. A simple statement of the law is that heat always flows spont ...
, therefore a heat engine will always produce a surplus of low-temperature heat. This is commonly referred to as waste heat or "secondary heat", or "low-grade heat". This heat is useful for the majority of heating applications, however, it is sometimes not practical to transport heat energy over long distances, unlike electricity or fuel energy. The largest proportions of total waste heat are from
power stations A power station, also referred to as a power plant and sometimes generating station or generating plant, is an industrial facility for the electricity generation, generation of electric power. Power stations are generally connected to an electr ...
and vehicle engines. The largest single sources are power stations and industrial plants such as oil refineries and
steelmaking Steelmaking is the process of producing steel from iron ore and/or scrap. Steel has been made for millennia, and was commercialized on a massive scale in the 1850s and 1860s, using the Bessemer process, Bessemer and open hearth furnace, Siemens-M ...
plants.


Air conditioning

Conventional
air conditioning Air conditioning, often abbreviated as A/C (US) or air con (UK), is the process of removing heat from an enclosed space to achieve a more comfortable interior temperature, and in some cases, also controlling the humidity of internal air. Air c ...
systems are a source of waste heat by releasing waste heat into the outdoor ambient air whilst cooling indoor spaces. This expelling of waste heat from air conditioning can worsen the
urban heat island Urban areas usually experience the urban heat island (UHI) effect; that is, they are significantly warmer than surrounding rural areas. The temperature difference is usually larger at night than during the day, and is most apparent when winds ar ...
effect. Waste heat from air conditioning can be reduced through the use of passive cooling building design and zero-energy methods like
evaporative cooling An evaporative cooler (also known as evaporative air conditioner, swamp cooler, swamp box, desert cooler and wet air cooler) is a device that cools air through the evaporation of water. Evaporative cooling differs from other air conditioning sy ...
and
passive daytime radiative cooling Passive daytime radiative cooling (PDRC) (also passive radiative cooling, daytime passive radiative cooling, radiative sky cooling, photonic radiative cooling, and terrestrial radiative cooling) is the use of unpowered, reflective/Emissivity, ther ...
, the latter of which sends waste heat directly to outer space through the infrared window.


Power generation

The
electrical efficiency The efficiency of a system in electronics and electrical engineering is defined as useful power output divided by the total electrical power consumed (a vulgar fraction, fractional Expression (mathematics), expression), typically denoted by the G ...
of thermal power plants is defined as the ratio between the input and output energy. It is typically only 33% when disregarding usefulness of the heat output for building heat. The images show
cooling tower A cooling tower is a device that rejects waste heat to the atmosphere through the cooling of a coolant stream, usually a water stream, to a lower temperature. Cooling towers may either use the evaporation of water to remove heat and cool the ...
s, which allow power stations to maintain the low side of the temperature difference essential for conversion of heat differences to other forms of energy. Discarded or "waste" heat that is lost to the environment may instead be used to advantage.


Industrial processes

Industrial processes, such as
oil refining An oil refinery or petroleum refinery is an industrial processes, industrial process Factory, plant where petroleum (crude oil) is transformed and refining, refined into products such as gasoline (petrol), diesel fuel, Bitumen, asphalt base, ...
, steel making or glass making are major sources of waste heat.


Electronics

Although small in terms of power, the disposal of waste heat from microchips and other electronic components, represents a significant engineering challenge. This necessitates the use of fans, heatsinks, etc. to dispose of the heat. For example, data centers use electronic components that consume electricity for computing, storage and networking. The French CNRS explains a data center is like a resistor and most of the energy it consumes is transformed into heat and requires cooling systems.


Biological

Humans, like all animals, produce heat as a result of
metabolism Metabolism (, from ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the co ...
. In warm conditions, this heat exceeds a level required for
homeostasis In biology, homeostasis (British English, British also homoeostasis; ) is the state of steady internal physics, physical and chemistry, chemical conditions maintained by organism, living systems. This is the condition of optimal functioning fo ...
in
warm-blooded Warm-blooded is a term referring to animal species whose bodies maintain a temperature higher than that of their environment. In particular, homeothermic species (including birds and mammals) maintain a stable body temperature by regulating ...
animals, and is disposed of by various
thermoregulation Thermoregulation is the ability of an organism to keep its body temperature within certain boundaries, even when the surrounding temperature is very different. A thermoconforming organism, by contrast, simply adopts the surrounding temperature ...
methods such as sweating and panting.


Disposal

Low temperature heat contains very little capacity to do work (
Exergy Exergy, often referred to as "available energy" or "useful work potential", is a fundamental concept in the field of thermodynamics and engineering. It plays a crucial role in understanding and quantifying the quality of energy within a system and ...
), so the heat is qualified as waste heat and rejected to the environment. Economically most convenient is the rejection of such heat to water from a
sea A sea is a large body of salt water. There are particular seas and the sea. The sea commonly refers to the ocean, the interconnected body of seawaters that spans most of Earth. Particular seas are either marginal seas, second-order section ...
,
lake A lake is often a naturally occurring, relatively large and fixed body of water on or near the Earth's surface. It is localized in a basin or interconnected basins surrounded by dry land. Lakes lie completely on land and are separate from ...
or
river A river is a natural stream of fresh water that flows on land or inside Subterranean river, caves towards another body of water at a lower elevation, such as an ocean, lake, or another river. A river may run dry before reaching the end of ...
. If sufficient cooling water is not available, the plant can be equipped with a
cooling tower A cooling tower is a device that rejects waste heat to the atmosphere through the cooling of a coolant stream, usually a water stream, to a lower temperature. Cooling towers may either use the evaporation of water to remove heat and cool the ...
or air cooler to reject the waste heat into the atmosphere. In some cases it is possible to use waste heat, for instance in
district heating District heating (also known as heat networks) is a system for distributing heat generated in a centralized location through a system of insulated pipes for residential and commercial heating requirements such as space heater, space heating and w ...
systems.


Uses


Conversion to electricity

There are many different approaches to transfer thermal energy to electricity, and the technologies to do so have existed for several decades. An established approach is by using a thermoelectric device, where a change in temperature across a semiconductor material creates a voltage through a phenomenon known as the Seebeck effect. A related approach is the use of thermogalvanic cells, where a temperature difference gives rise to an electric current in an electrochemical cell. The
organic Rankine cycle In thermal engineering, the organic Rankine cycle (ORC) is a type of thermodynamic cycle. It is a variation of the Rankine cycle named for its use of an organic, high- molecular-mass fluid (compared to water) whose vaporization temperature is l ...
, offered by companies such as Ormat, is a very known approach, whereby an organic substance is used as
working fluid For fluid power, a working fluid is a gas or liquid that primarily transfers force, motion, or mechanical energy. In hydraulics, water or hydraulic fluid transfers force between hydraulic components such as hydraulic pumps, hydraulic cylinders, a ...
instead of water. The benefit is that this process can reject heat at lower temperatures for the production of electricity than the regular water steam cycle. An example of use of the steam
Rankine cycle The Rankine cycle is an idealized thermodynamic cycle describing the process by which certain heat engines, such as steam turbines or reciprocating steam engines, allow mechanical work to be extracted from a fluid as it moves between a heat sour ...
is the Cyclone Waste Heat Engine.


Cogeneration and trigeneration

Waste of the by-product heat is reduced if a
cogeneration Cogeneration or combined heat and power (CHP) is the use of a heat engine or power station to generate electricity and useful heat at the same time. Cogeneration is a more efficient use of fuel or heat, because otherwise- wasted heat from elec ...
system is used, also known as a Combined Heat and Power (CHP) system. Limitations to the use of by-product heat arise primarily from the engineering cost/efficiency challenges in effectively exploiting small temperature differences to generate other forms of energy. Applications utilizing waste heat include
swimming pool A swimming pool, swimming bath, wading pool, paddling pool, or simply pool, is a structure designed to hold water to enable Human swimming, swimming and associated activities. Pools can be built into the ground (in-ground pools) or built abo ...
heating and paper mills. In some cases, cooling can also be produced by the use of absorption refrigerators for example, in this case it is called trigeneration or CCHP (combined cooling, heat and power).


District heating

Waste heat can be used in
district heating District heating (also known as heat networks) is a system for distributing heat generated in a centralized location through a system of insulated pipes for residential and commercial heating requirements such as space heater, space heating and w ...
. Depending on the temperature of the waste heat and the district heating system, a
heat pump A heat pump is a device that uses electricity to transfer heat from a colder place to a warmer place. Specifically, the heat pump transfers thermal energy using a heat pump and refrigeration cycle, cooling the cool space and warming the warm s ...
must be used to reach sufficient temperatures. These are an easy and cheap way to use waste heat in cold district heating systems, as these are operated at ambient temperatures and therefore even low-grade waste heat can be used without needing a heat pump at the producer side.


Pre-heating

Waste heat can be forced to heat incoming fluids and objects before being highly heated. For instance, outgoing water can give its waste heat to incoming water in a
heat exchanger A heat exchanger is a system used to transfer heat between a source and a working fluid. Heat exchangers are used in both cooling and heating processes. The fluids may be separated by a solid wall to prevent mixing or they may be in direct contac ...
before heating in homes or
power plant A power station, also referred to as a power plant and sometimes generating station or generating plant, is an industrial facility for the electricity generation, generation of electric power. Power stations are generally connected to an electr ...
s.


Anthropogenic heat

Anthropogenic heat is heat generated by humans and human activity. The
American Meteorological Society The American Meteorological Society (AMS) is a scientific and professional organization in the United States promoting and disseminating information about the atmospheric, oceanic, and hydrologic sciences. Its mission is to advance the atmosph ...
defines it as "Heat released to the atmosphere as a result of human activities, often involving combustion of fuels. Sources include industrial plants, space heating and cooling, human metabolism, and vehicle exhausts. In cities this source typically contributes 15–50 W/m2 to the local heat balance, and several hundred W/m2 in the center of large cities in cold climates and industrial areas." In 2020, the overall anthropogenic annual energy release was 168,000 terawatt-hours; given the 5.1×10 m surface area of Earth, this amounts to a global average anthropogenic heat release rate of 0.04 W/m.


Environmental impact

Anthropogenic heat is a small influence on rural temperatures, and becomes more significant in dense urban areas. It is one contributor to
urban heat island Urban areas usually experience the urban heat island (UHI) effect; that is, they are significantly warmer than surrounding rural areas. The temperature difference is usually larger at night than during the day, and is most apparent when winds ar ...
s. Other human-caused effects (such as changes to
albedo Albedo ( ; ) is the fraction of sunlight that is Diffuse reflection, diffusely reflected by a body. It is measured on a scale from 0 (corresponding to a black body that absorbs all incident radiation) to 1 (corresponding to a body that reflects ...
, or loss of evaporative cooling) that might contribute to urban heat islands are not considered to be anthropogenic heat by this definition. Anthropogenic heat is a much smaller contributor to
global warming Present-day climate change includes both global warming—the ongoing increase in global average temperature—and its wider effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes ...
than
greenhouse gas Greenhouse gases (GHGs) are the gases in the atmosphere that raise the surface temperature of planets such as the Earth. Unlike other gases, greenhouse gases absorb the radiations that a planet emits, resulting in the greenhouse effect. T ...
es are. In 2005, anthropogenic waste heat flux globally accounted for only 1% of the energy flux created by anthropogenic greenhouse gases. The heat flux is not evenly distributed, with some regions higher than others, and significantly higher in certain urban areas. For example, global forcing from waste heat in 2005 was 0.028 W/m2, but was +0.39 and +0.68 W/m2 for the continental United States and western Europe, respectively. Although waste heat has been shown to have influence on regional climates,
climate forcing Radiative forcing (or climate forcing) is a concept used to quantify a change to the Earth's energy budget, balance of energy flowing through a planetary atmosphere. Various factors contribute to this change in energy balance, such as concentration ...
from waste heat is not normally calculated in state-of-the-art global climate simulations. Equilibrium climate experiments show statistically significant continental-scale surface warming (0.4–0.9 °C) produced by one 2100 AHF scenario, but not by current or 2040 estimates. Simple global-scale estimates with different growth rates of anthropogenic heat that have been actualized recently show noticeable contributions to global warming, in the following centuries. For example, a 2% p.a. growth rate of waste heat resulted in a 3 degree increase as a lower limit for the year 2300. Meanwhile, this has been confirmed by more refined model calculations. A 2008 scientific paper showed that if anthropogenic heat emissions continue to rise at the current rate, they will become a source of warming as strong as GHG emissions in the 21st century.


See also

*
Cost of electricity by source Different methods of electricity generation can incur a variety of different costs, which can be divided into three general categories: 1) wholesale costs, or all costs paid by utilities associated with acquiring and distributing electricity to ...
* Heat recovery steam generator * Pinch analysis *
Thermal pollution Thermal pollution, sometimes called "thermal enrichment", is the degradation of water quality by any process that changes ambient water temperature. Thermal pollution is the rise or drop in the temperature of a natural body of water caused by h ...
* Urban metabolism *
Waste heat recovery unit A waste heat recovery unit (WHRU) is an energy recovery heat exchanger that transfers heat from process outputs at high temperature to another part of the process for some purpose, usually increased efficiency. The WHRU is a tool involved in cog ...


References

{{Authority control Heat transfer Thermodynamics Energy conversion Climate forcing Atmospheric radiation
Heat In thermodynamics, heat is energy in transfer between a thermodynamic system and its surroundings by such mechanisms as thermal conduction, electromagnetic radiation, and friction, which are microscopic in nature, involving sub-atomic, ato ...