Whole object assumption
One way in which children constrain the meaning of novel words is through the whole object assumption. When an adult points to an object and says a word, a child assumes this word labels the entire object, not parts or characteristics of the object. For example, if a child is shown an object and given the label "truck", the child will assume "truck" refers to the entire object instead of the tires, doors, color or other parts.Domain specificity
It is often questioned if the word-learning constraints are specific to the domain of language, or if they apply to other cognitive domains. As for the whole object assumption, evidence suggests that the idea of objects is more advantaged than characteristics or relations. Children assume a label refers to a whole object because the object is more salient than its properties. The whole object assumption may reflect non-linguistic levels of an object and exploits the cognitive tendency to analyze the world through a whole object lens, meaning the whole object assumption can be applied to cognitive domains outside of language.Criticisms
One popular criticism is that evidence is only provided for children 18 months and older. A more recent study strengthened the breadth of ages and stimuli conditions under which this bias occurs. As early as 12 months, infants can associate words with whole objects when the objects can be viewed as two separate objects and even when one of the parts is made salient. Another criticism is the claim that a restricted set of stimuli has been used that possibly favors a "whole" interpretation. To counter this claim, the whole object assumption has been tested with adults as well. Even when participants, 18–36 years of age, were instructed that they would be tested more frequently for parts, they were better able to recognize the whole objects rather than parts. These findings support the hypothesis that there is an assumption to encode the overall shape of the stimuli in working memory rather than individual details.Taxonomic assumption
After a child constrains a novel word to label a whole object, the child must learn how to apply the label to similar objects. Ordinarily, children focus onDomain specificity
The taxonomic assumption is very clearly applicable to cognitive domains outside of language. One obvious domain is children's inductive reasoning. An example of this assumption at work in this domain would be for a child to know that Edgar is a grandfather, and Edgar is bald, so they assume all grandfathers are bald. While there are domains that taxonomic assumptions are seen, there are also clear cognitive domains where these assumptions are avoided, such as identifying causality orCriticisms
There aren't as many criticisms on the taxonomic assumption as there are for other word learning assumptions. However, Nelson (1988) argues against the taxonomic assumption because children aren't responding to tests 100% accurately 100% of the time. The concept of have perfect accuracy every time with every participant isn't something found in most research, but Nelson claims this assumption might not be biological. Another critique of the taxonomic assumption is that it extends past words thus should not be considered a word learning bias. In 1990, Premack conducted a taxonomic assumption experiment with chimpanzees who were being taught words and those who were not. Premack found similar results of what studies using children found—chimpanzees learning language used the taxonomic assumption. Premack claimed these chimps did not have an idea of real words since they were in the beginning of the word learning process thus making the assumption a nonlinguistic assumption. Others criticize Premack by saying this assumption can fit language but doesn't stop at language which is where the domain specificity comes in.Mutual exclusivity assumption
The whole object assumption leads children to constraining labels to an entire object, but children must also learn labels for characteristics or parts of an object. To override the whole object assumption, children also utilize the mutual exclusivity assumption. Simply put, the mutual exclusivity assumption suggests that every object only has one name. Children resist assigning a label to an object for which they already have a name or at least will not learn the new name as easily. Children are then able to start considering other possibilities for the new label, for instance, a part of the object. For example, an adult presents a child with two objects, a truck and a novel object. The adult asks the child to pick up the blicket. If the child already knows "truck" but has not heard "blicket" as a label for an object, the child will assume this label maps onto the novel object. Markman and Wachtel's 1988 studies demonstrated the learning process through the whole-object and mutual exclusivity assumption. The experimenter told three-year-old children a word and then showed them a picture. She asked whether the label referred to the whole object or a part and outlined each option with her finger. When the whole object was unfamiliar they pointed to the part in only 20% of the trials, but pointed to the part in 57% of the trials when the object was familiar. A recent study attempted to replicate and extend these results. Hansen and Markman taught children a new word for a part of a real object by saying the word and tracing the object's contours. (These gestures were meant to remain as naturalistic as possible). They then asked children to point to the new part in order to identify if they have linked the new name to the intended part. The main manipulation was whether the object was familiar or not. Upholding the mutual exclusivity assumption children pointed to the intended part more often in the familiar object condition. Furthermore, the gesture of pointing/outlining the part itself was insufficient for children to learn the part name. Mutual exclusivity and a gesture were necessary for children to select the novel part. Other researchers have come up with similar principles. Clark's contrast theory holds that "every two forms contrast in meaning". When a new word is presented the child assumes it refers to something that does not yet have a label, but contrast does not take into account the overlap words may have in meaning. Golinkoff's novel name-nameless category (N3C) also states that a child will map a new name to the unnamed object when a named object is present. Unlike contrast, N3C does not require children to understandDomain specificity
Unlike the other two constraints, mutual exclusivity is easily identified as domain-general. The mutual exclusivity assumption is the one of the three constraints that is easily generalized to other cognitive domains. Within the domain of language but outside of word-learning, mutual exclusivity is applied to the one-to-one mapping principle of language acquisition as well as the acquisition of syntax. While it is commonly applied throughout the domain of language, mutual exclusivity seems to be a domain-general principle used in analyzing many new domains of knowledge.Criticisms
The mutual exclusivity assumption is disputed when children learn objects can have more than one name. For example, a dog can be a "dog" and an "animal" and named "Spot." According to the mutual exclusivity assumption, one would assume children would not accept that the dog could be three different names. However, children tend to accept the differences. Merriman (1986) found that children who were introduced to both or all names initially accepted one object having multiple names. Markman and Wachtel (1988) hypothesize that children preference the taxonomic constraint when it interferes with the mutual exclusivity assumption. Merriman and Bowman (1989) found that when children have a specific name for an object, they'd use that name if the object was atypical. The example they use is if a unique car was a "bave," children would not call it a "car." Just like any of the assumptions, it's hard if not impossible to tell where one assumption starts and another stops.Noun-category bias
The noun-category bias suggests that children learn nouns more quickly than any other syntactic category. It has been found to appear in young children as early as the age of two and is used to help children differentiate between syntactic categories such as nouns and adjectives. Preschool-age children have been found to be inclined to interpret words from just one linguistic category- nouns. Gentner proposes that this might be due to the fact that nouns represent a more concrete object. The noun-category bias places regulations on the possible interpretations that a child might attach to a newly encountered noun. Experiments from Waxman and Gelman as well as Markman and Hutchinson provide results which support the claim that children show preference for categorical relations over random hypothesizing when learning new nouns. This suggests a correlation betweenShape bias
The shape bias proposes that children apply names to same-shaped objects. This stems from the idea that children are associative learners that have abstract category knowledge at many different levels. They should be able to identify specifics of each category (e.g. pickles are round, long, green, and bumpy). This knowledge aids children in categorizing newly encountered objects. The shape bias is a widely contested area of study in psycholinguistics. As of now, identically performed experiments have provided evidence that can be used to argue either for or against the shape bias. The argument is, essentially, whether or not there is a shift in language learning from perceptual to conceptual.References
{{Reflist Language acquisition