In
mathematical optimization
Mathematical optimization (alternatively spelled ''optimisation'') or mathematical programming is the selection of a best element, with regard to some criteria, from some set of available alternatives. It is generally divided into two subfiel ...
, Wolfe duality, named after
Philip Wolfe, is type of
dual problem
In mathematical optimization theory, duality or the duality principle is the principle that optimization problems may be viewed from either of two perspectives, the primal problem or the dual problem. If the primal is a minimization problem then th ...
in which the
objective function
In mathematical optimization and decision theory, a loss function or cost function (sometimes also called an error function) is a function that maps an event or values of one or more variables onto a real number intuitively representing some "cost ...
and constraints are all
differentiable function
In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non- vertical tangent line at each interior point in ...
s. Using this concept a lower bound for a minimization problem can be found because of the
weak duality principle.
Mathematical formulation
For a minimization problem with inequality constraints,
:
the
Lagrangian dual problem is
:
where the objective function is the Lagrange dual function. Provided that the functions
and
are convex and continuously differentiable, the
infimum
In mathematics, the infimum (abbreviated inf; : infima) of a subset S of a partially ordered set P is the greatest element in P that is less than or equal to each element of S, if such an element exists. If the infimum of S exists, it is unique ...
occurs where the gradient is equal to zero. The problem
:
is called the Wolfe dual problem. This problem employs the
KKT conditions as a constraint. Also, the equality constraint
is nonlinear in general, so the Wolfe dual problem may be a nonconvex optimization problem. In any case, weak duality holds.
See also
*
Lagrangian duality
*
Fenchel duality
References
Convex optimization
{{applied-math-stub