Wireless power transfer (WPT; also wireless energy transmission or WET) is the transmission of
electrical energy
Electrical energy is the energy transferred as electric charges move between points with different electric potential, that is, as they move across a voltage, potential difference. As electric potential is lost or gained, work is done changing the ...
without
wire
file:Sample cross-section of high tension power (pylon) line.jpg, Overhead power cabling. The conductor consists of seven strands of steel (centre, high tensile strength), surrounded by four outer layers of aluminium (high conductivity). Sample d ...
s as a physical link. In a wireless power transmission system, an
electrically powered transmitter device generates a time-varying
electromagnetic field that transmits power across space to a receiver device; the receiver device extracts power from the field and supplies it to an
electrical load
An electrical load is an electrical component or portion of a Electric Circuit, circuit that consumes (active) electric power, such as electrical appliances and Electric light, lights inside the home. The term may also refer to the power Power con ...
. The technology of wireless power transmission can eliminate the use of the wires and batteries, thereby increasing the mobility, convenience, and safety of an electronic device for all users. Wireless power transfer is useful to power electrical devices where interconnecting wires are inconvenient, hazardous, or are not possible.
Wireless power techniques mainly fall into two categories:
Near and far field. In ''near field'' or ''non-radiative'' techniques, power is transferred over short distances by
magnetic field
A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
s using
inductive coupling between
coils of wire, or by
electric field
An electric field (sometimes called E-field) is a field (physics), physical field that surrounds electrically charged particles such as electrons. In classical electromagnetism, the electric field of a single charge (or group of charges) descri ...
s using
capacitive coupling between metal
electrode
An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or a gas). In electrochemical cells, electrodes are essential parts that can consist of a varie ...
s.
Inductive coupling is the most widely used wireless technology; its applications include charging handheld devices like phones and
electric toothbrushes,
RFID tags,
induction cooking, and wirelessly charging or continuous wireless power transfer in implantable medical devices like
artificial cardiac pacemakers, or
electric vehicle
An electric vehicle (EV) is a motor vehicle whose propulsion is powered fully or mostly by electricity. EVs encompass a wide range of transportation modes, including road vehicle, road and rail vehicles, electric boats and Submersible, submer ...
s. In ''far-field'' or ''radiative'' techniques, also called ''power beaming'', power is transferred by beams of
electromagnetic radiation
In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength ...
, like
microwave
Microwave is a form of electromagnetic radiation with wavelengths shorter than other radio waves but longer than infrared waves. Its wavelength ranges from about one meter to one millimeter, corresponding to frequency, frequencies between 300&n ...
s or
laser
A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word ''laser'' originated as an acronym for light amplification by stimulated emission of radi ...
beams. These techniques can transport energy longer distances but must be aimed at the receiver. Proposed applications for this type include
solar power satellites and wireless powered
drone aircraft
An unmanned aerial vehicle (UAV) or unmanned aircraft system (UAS), commonly known as a drone, is an aircraft with no human Aircraft pilot, pilot, crew, or passengers onboard, but rather is controlled remotely or is autonomous.De Gruyter H ...
.
Wireless power transfer is a generic term for a number of different technologies for transmitting energy by means of electromagnetic fields.
The technologies differ in the distance over which they can transfer power efficiently, whether the transmitter must be aimed (directed) at the receiver, and in the type of electromagnetic energy they use: time varying electric fields, magnetic fields,
radio wave
Radio waves (formerly called Hertzian waves) are a type of electromagnetic radiation with the lowest frequencies and the longest wavelengths in the electromagnetic spectrum, typically with frequencies below 300 gigahertz (GHz) and wavelengths g ...
s, microwaves,
infrared
Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
or
visible light waves.
In general a wireless power system consists of a "transmitter" device connected to a source of power such as a
mains power line, which converts the power to a time-varying electromagnetic field, and one or more "receiver" devices which receive the power and convert it back to DC or AC electric current which is used by an electrical load.
At the transmitter the input power is converted to an oscillating electromagnetic field by some type of "
antenna" device. The word "antenna" is used loosely here; it may be a coil of wire which generates a magnetic field, a metal plate which generates an electric field, an antenna which radiates radio waves, or a laser which generates light. A similar antenna or
coupling device at the receiver converts the oscillating fields to an electric current. An important parameter that determines the type of waves is the
frequency
Frequency is the number of occurrences of a repeating event per unit of time. Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio ...
, which determines the wavelength.
Wireless power uses the same fields and waves as
wireless communication devices like
radio
Radio is the technology of communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connec ...
,
another familiar technology that involves electrical energy transmitted without wires by electromagnetic fields, used in
cellphones,
radio
Radio is the technology of communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connec ...
and
television broadcasting
A television broadcaster or television network is a telecommunications network for the distribution of television content, where a central operation provides programming to many television stations, pay television providers or, in the United ...
, and
WiFi. In
radio communication
Radio is the technology of telecommunication, communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transm ...
the goal is the transmission of information, so the amount of power reaching the receiver is not so important, as long as it is sufficient that the information can be received intelligibly.
In wireless communication technologies only tiny amounts of power reach the receiver. In contrast, with wireless power transfer the amount of energy received is the important thing, so the
efficiency
Efficiency is the often measurable ability to avoid making mistakes or wasting materials, energy, efforts, money, and time while performing a task. In a more general sense, it is the ability to do things well, successfully, and without waste.
...
(fraction of transmitted energy that is received) is the more significant parameter.
For this reason, wireless power technologies are likely to be more limited by distance than wireless communication technologies.
Wireless power transfer may be used to power up wireless information transmitters or receivers. This type of communication is known as wireless powered communication (WPC). When the harvested power is used to supply the power of wireless information transmitters, the network is known as Simultaneous Wireless Information and Power Transfer (SWIPT); whereas when it is used to supply the power of wireless information receivers, it is known as a Wireless Powered Communication Network (WPCN).
An important issue associated with all wireless power systems is limiting the exposure of people and other living beings to potentially injurious electromagnetic fields.
History
19th century developments and dead ends
The 19th century saw many developments of theories, and counter-theories on how electrical energy might be transmitted. In 1826,
André-Marie Ampère discovered a connection between current and magnets.
Michael Faraday
Michael Faraday (; 22 September 1791 – 25 August 1867) was an English chemist and physicist who contributed to the study of electrochemistry and electromagnetism. His main discoveries include the principles underlying electromagnetic inducti ...
described in 1831 with his
law of induction the
electromotive force
In electromagnetism and electronics, electromotive force (also electromotance, abbreviated emf, denoted \mathcal) is an energy transfer to an electric circuit per unit of electric charge, measured in volts. Devices called electrical ''transducer ...
driving a current in a conductor loop by a time-varying magnetic flux. Transmission of electrical energy without wires was observed by many inventors and experimenters, but lack of a coherent theory attributed these phenomena vaguely to
electromagnetic induction
Electromagnetic or magnetic induction is the production of an electromotive force, electromotive force (emf) across an electrical conductor in a changing magnetic field.
Michael Faraday is generally credited with the discovery of induction in 1 ...
. A concise explanation of these phenomena would come from the 1860s
Maxwell's equations
Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, Electrical network, electr ...
by
James Clerk Maxwell
James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish physicist and mathematician who was responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism an ...
, establishing a theory that unified electricity and magnetism to
electromagnetism
In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
, predicting the existence of electromagnetic waves as the "wireless" carrier of electromagnetic energy. Around 1884
John Henry Poynting
John Henry Poynting Fellow of the Royal Society, FRS (9 September 185230 March 1914) was an English physicist. He was the first professor of physics at Mason Science College from 1880 to 1900, and then the successor institution, the University ...
defined the
Poynting vector and gave
Poynting's theorem, which describe the flow of power across an area within
electromagnetic radiation
In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength ...
and allow for a correct analysis of wireless power transfer systems.
This was followed on by
Heinrich Rudolf Hertz' 1888 validation of the theory, which included the evidence for
radio wave
Radio waves (formerly called Hertzian waves) are a type of electromagnetic radiation with the lowest frequencies and the longest wavelengths in the electromagnetic spectrum, typically with frequencies below 300 gigahertz (GHz) and wavelengths g ...
s.
During the same period two schemes of wireless signaling were put forward by
William Henry Ward (1871) and
Mahlon Loomis (1872) that were based on the erroneous belief that there was an electrified atmospheric stratum accessible at low altitude. Both inventors' patents noted this layer connected with a return path using "Earth currents"' would allow for wireless telegraphy as well as supply power for the telegraph, doing away with artificial batteries, and could also be used for lighting, heat, and motive power. A more practical demonstration of wireless transmission via conduction came in
Amos Dolbear's 1879 magneto electric telephone that used ground conduction to transmit over a distance of a quarter of a mile.
Nikola Tesla

After 1890, inventor
Nikola Tesla
Nikola Tesla (;["Tesla"](_blank)
. ''Random House Webster's Unabridged Dictionary''. ; 10 July 1856 – 7 ...
experimented with transmitting power by inductive and capacitive coupling using spark-excited
radio frequency
Radio frequency (RF) is the oscillation rate of an alternating electric current or voltage or of a magnetic, electric or electromagnetic field or mechanical system in the frequency range from around to around . This is roughly between the u ...
resonant transformers, now called
Tesla coils, which generated high AC voltages.
[Tesla, Nikola (20 May 1891]
''Experiments with Alternate Currents of Very High Frequency and Their Application to Methods of Artificial Illumination''
lecture before the American Inst. of Electrical Engineers, Columbia College, New York. Reprinted as a Early on he attempted to develop a wireless lighting system based on
near-field inductive and capacitive coupling
and conducted a series of public demonstrations where he lit
Geissler tubes and even incandescent light bulbs from across a stage.
He found he could increase the distance at which he could light a lamp by using a receiving
LC circuit tuned to
resonance
Resonance is a phenomenon that occurs when an object or system is subjected to an external force or vibration whose frequency matches a resonant frequency (or resonance frequency) of the system, defined as a frequency that generates a maximu ...
with the transmitter's LC circuit.
using
resonant inductive coupling.
Tesla failed to make a commercial product out of his findings but his resonant inductive coupling method is now widely used in electronics and is currently being applied to short-range wireless power systems.
Tesla went on to develop a wireless power distribution system that he hoped would be capable of transmitting power long distance directly into homes and factories. Early on he seemed to borrow from the ideas of Mahlon Loomis, proposing a system composed of balloons to suspend transmitting and receiving electrodes in the air above in altitude, where he thought the pressure would allow him to send high voltages (millions of volts) long distances. To further study the conductive nature of low pressure air he set up a test facility at high altitude in Colorado Springs during 1899. Experiments he conducted there with a large coil operating in the megavolts range, as well as observations he made of the electronic noise of lightning strikes, led him to conclude incorrectly
that he could use the entire globe of the Earth to conduct electrical energy. The theory included driving alternating current pulses into the Earth at its resonant frequency from a grounded Tesla coil working against an elevated capacitance to make the potential of the Earth oscillate. Tesla thought this would allow alternating current to be received with a similar capacitive antenna tuned to resonance with it at any point on Earth with very little power loss.
[, reprinted in ]
Scientific American Supplement, Munn and Co., Vol. 57, No. 1483, 4 June 1904, p. 23760–23761
' His observations also led him to believe a high voltage used in a coil at an elevation of a few hundred feet would "break the air stratum down", eliminating the need for miles of cable hanging on balloons to create his atmospheric return circuit.
[Cooper, Drury W., internal document of the law firm Kerr, Page & Cooper, New York City, 1916. (Cited in ] Tesla would go on the next year to propose a "
World Wireless System" that was to broadcast both information and power worldwide.
In 1901, at Shoreham, New York he attempted to construct a large high-voltage wireless power station, now called
Wardenclyffe Tower, but by 1904 investment dried up and the facility was never completed.
Post-war developments
Before World War II, little progress was made in wireless power transmission.
Radio
Radio is the technology of communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connec ...
was developed for communication uses, but could not be used for power transmission since the relatively low-
frequency
Frequency is the number of occurrences of a repeating event per unit of time. Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio ...
radio wave
Radio waves (formerly called Hertzian waves) are a type of electromagnetic radiation with the lowest frequencies and the longest wavelengths in the electromagnetic spectrum, typically with frequencies below 300 gigahertz (GHz) and wavelengths g ...
s spread out in all directions and little energy reached the receiver.
In radio communication, at the receiver, an
amplifier
An amplifier, electronic amplifier or (informally) amp is an electronic device that can increase the magnitude of a signal (a time-varying voltage or current). It is a two-port electronic circuit that uses electric power from a power su ...
intensifies a weak signal using energy from another source. For power transmission, efficient transmission required
transmitter
In electronics and telecommunications, a radio transmitter or just transmitter (often abbreviated as XMTR or TX in technical documents) is an electronic device which produces radio waves with an antenna (radio), antenna with the purpose of sig ...
s that could generate higher-frequency
microwave
Microwave is a form of electromagnetic radiation with wavelengths shorter than other radio waves but longer than infrared waves. Its wavelength ranges from about one meter to one millimeter, corresponding to frequency, frequencies between 300&n ...
s, which can be focused in narrow beams towards a receiver.
The development of microwave technology during World War II, such as the
klystron and
magnetron
The cavity magnetron is a high-power vacuum tube used in early radar systems and subsequently in microwave oven, microwave ovens and in linear particle accelerators. A cavity magnetron generates microwaves using the interaction of a stream of ...
tubes and
parabolic antenna
A parabolic antenna is an antenna that uses a parabolic reflector, a curved surface with the cross-sectional shape of a parabola, to direct the radio waves. The most common form is shaped like a dish and is popularly called a dish antenna or p ...
s,
made some radiative (
far-field) methods practical for the first time, and the first long-distance wireless power transmission was achieved in the 1960s by
William C. Brown.
In 1964, Brown invented the
rectenna which could efficiently convert microwaves to DC power, and in 1964 demonstrated it with the first wireless-powered aircraft, a model helicopter powered by microwaves beamed from the ground.
Field regions
Electric
Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwel ...
and
magnetic field
A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
s are created by
charged particle
In physics, a charged particle is a particle with an electric charge. For example, some elementary particles, like the electron or quarks are charged. Some composite particles like protons are charged particles. An ion, such as a molecule or atom ...
s in matter such as
electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s. A stationary charge creates an
electrostatic field
An electric field (sometimes called E-field) is a physical field that surrounds electrically charged particles such as electrons. In classical electromagnetism, the electric field of a single charge (or group of charges) describes their capac ...
in the space around it. A steady
current of charges (
direct current
Direct current (DC) is one-directional electric current, flow of electric charge. An electrochemical cell is a prime example of DC power. Direct current may flow through a conductor (material), conductor such as a wire, but can also flow throug ...
, DC) creates a static magnetic field around it. These fields contain
energy
Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
, but cannot carry
power because they are static. However time-varying fields can carry power.
Accelerating electric charges, such as are found in an
alternating current
Alternating current (AC) is an electric current that periodically reverses direction and changes its magnitude continuously with time, in contrast to direct current (DC), which flows only in one direction. Alternating current is the form in w ...
(AC) of electrons in a wire, create time-varying electric and magnetic fields in the space around them. These fields can exert oscillating forces on the electrons in a receiving "antenna", causing them to move back and forth. These represent alternating current which can be used to power a load.
The oscillating electric and magnetic fields surrounding moving electric charges in an antenna device can be divided into two regions, depending on distance ''D''
range from the antenna.
The boundary between the regions is somewhat vaguely defined.
The fields have different characteristics in these regions, and different technologies are used for transferring power:
* ''Near-field'' or ''nonradiative'' region: This means the area within about 1
wavelength
In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats.
In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
(''λ'') of the antenna.
In this region the oscillating
electric
Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwel ...
and
magnetic field
A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
s are separate
and power can be transferred via electric fields by
capacitive coupling (
electrostatic induction
Electrostatic induction, also known as "electrostatic influence" or simply "influence" in Europe and Latin America, is a redistribution of electric charge in an object that is caused by the influence of nearby charges. In the presence of a charg ...
) between metal electrodes,
or via magnetic fields by
inductive coupling (
electromagnetic induction
Electromagnetic or magnetic induction is the production of an electromotive force, electromotive force (emf) across an electrical conductor in a changing magnetic field.
Michael Faraday is generally credited with the discovery of induction in 1 ...
) between coils of wire.
These fields are not ''radiative'',
meaning the energy stays within a short distance of the transmitter.
If there is no receiving device or absorbing material within their limited range to "couple" to, no power leaves the transmitter.
The range of these fields is short, and depends on the size and shape of the "antenna" devices, which are usually coils of wire. The fields, and thus the power transmitted, decrease
exponentially with distance,
so if the distance between the two "antennas" ''D''
range is much larger than the diameter of the "antennas" ''D''
ant very little power will be received. Therefore, these techniques cannot be used for long range power transmission.
Resonance
Resonance is a phenomenon that occurs when an object or system is subjected to an external force or vibration whose frequency matches a resonant frequency (or resonance frequency) of the system, defined as a frequency that generates a maximu ...
, such as
resonant inductive coupling, can increase the
coupling between the antennas greatly, allowing efficient transmission at somewhat greater distances,
although the fields still decrease exponentially. Therefore the range of near-field devices is conventionally divided into two categories:
** ''Short range'': up to about one antenna diameter: ''D''
range ≤ ''D''
ant.
This is the range over which ordinary nonresonant capacitive or inductive coupling can transfer practical amounts of power.
** ''Mid-range'': up to 10 times the antenna diameter: ''D''
range ≤ 10 ''D''
ant.
["''...strongly coupled magnetic resonance can work over the mid-range distance, defined as several times the resonator size.''"]
Agbinya (2012) ''Wireless Power Transfer'', p. 40
/ref> This is the range over which resonant capacitive or inductive coupling can transfer practical amounts of power.
* ''Far-field'' or ''radiative'' region: Beyond about 1 wavelength (''λ'') of the antenna, the electric and magnetic fields are perpendicular to each other and propagate as an electromagnetic wave
In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength, ...
; examples are radio wave
Radio waves (formerly called Hertzian waves) are a type of electromagnetic radiation with the lowest frequencies and the longest wavelengths in the electromagnetic spectrum, typically with frequencies below 300 gigahertz (GHz) and wavelengths g ...
s, microwave
Microwave is a form of electromagnetic radiation with wavelengths shorter than other radio waves but longer than infrared waves. Its wavelength ranges from about one meter to one millimeter, corresponding to frequency, frequencies between 300&n ...
s, or light waves. This part of the energy is ''radiative'', meaning it leaves the antenna whether or not there is a receiver to absorb it. The portion of energy which does not strike the receiving antenna is dissipated and lost to the system. The amount of power emitted as electromagnetic waves by an antenna depends on the ratio of the antenna's size ''D''ant to the wavelength of the waves ''λ'', which is determined by the frequency: ''λ'' = ''c/f''. At low frequencies ''f'' where the antenna is much smaller than the size of the waves, ''D''ant << ''λ'', very little power is radiated. Therefore near-field devices, which use lower frequencies, radiate almost none of their energy as electromagnetic radiation. Antennas about the same size as the wavelength ''D''ant ≈ ''λ'' such as monopole or dipole antennas, radiate power efficiently, but the electromagnetic waves are radiated in all directions ( omnidirectionally), so if the receiving antenna is far away, only a small amount of the radiation will hit it. Therefore, these can be used for short range, inefficient power transmission but not for long range transmission. However, unlike fields, electromagnetic radiation can be focused by reflection or refraction
In physics, refraction is the redirection of a wave as it passes from one transmission medium, medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. Refraction of light is the most commo ...
into beams. By using a high-gain antenna or optical system which concentrates the radiation into a narrow beam aimed at the receiver, it can be used for long range power transmission. From the Rayleigh criterion, to produce the narrow beams necessary to focus a significant amount of the energy on a distant receiver, an antenna must be much larger than the wavelength of the waves used: ''D''ant >> ''λ'' = ''c/f''. Practical ''beam power'' devices require wavelengths in the centimeter region or lower, corresponding to frequencies above 1 GHz, in the microwave
Microwave is a form of electromagnetic radiation with wavelengths shorter than other radio waves but longer than infrared waves. Its wavelength ranges from about one meter to one millimeter, corresponding to frequency, frequencies between 300&n ...
range or above.
Near-field (nonradiative) techniques
At large relative distance, the near-field components of electric and magnetic fields are approximately quasi-static oscillating dipole fields. These fields decrease with the cube of distance: (''D''range / ''D''ant)−3[ on http://www.americanradiohistory.com] Since power is proportional to the square of the field strength, the power transferred decreases as (''D''range / ''D''ant)−6. or 60 dB per decade. In other words, if far apart, increasing the distance between the two antennas tenfold causes the power received to decrease by a factor of 106 = 1000000. As a result, inductive and capacitive coupling can only be used for short-range power transfer, within a few times the diameter of the antenna device ''D''ant. Unlike in a radiative system where the maximum radiation occurs when the dipole antennas are oriented transverse to the direction of propagation, with dipole fields the maximum coupling occurs when the dipoles are oriented longitudinally.
Inductive coupling
In inductive coupling (''electromagnetic induction
Electromagnetic or magnetic induction is the production of an electromotive force, electromotive force (emf) across an electrical conductor in a changing magnetic field.
Michael Faraday is generally credited with the discovery of induction in 1 ...
'' or ''inductive power transfer'', IPT), power is transferred between coils of wire by a magnetic field
A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
. The transmitter and receiver coils together form a transformer. An alternating current
Alternating current (AC) is an electric current that periodically reverses direction and changes its magnitude continuously with time, in contrast to direct current (DC), which flows only in one direction. Alternating current is the form in w ...
(AC) through the transmitter coil ''(L1)'' creates an oscillating magnetic field ''(B)'' by Ampere's law. The magnetic field passes through the receiving coil ''(L2)'', where it induces an alternating EMF (voltage
Voltage, also known as (electrical) potential difference, electric pressure, or electric tension, is the difference in electric potential between two points. In a Electrostatics, static electric field, it corresponds to the Work (electrical), ...
) by Faraday's law of induction, which creates an alternating current in the receiver. The induced alternating current may either drive the load directly, or be rectified to direct current
Direct current (DC) is one-directional electric current, flow of electric charge. An electrochemical cell is a prime example of DC power. Direct current may flow through a conductor (material), conductor such as a wire, but can also flow throug ...
(DC) by a rectifier in the receiver, which drives the load. A few systems, such as electric toothbrush charging stands, work at 50/60 Hz so AC mains current is applied directly to the transmitter coil, but in most systems an electronic oscillator
An electronic oscillator is an electronic circuit that produces a periodic, oscillating or alternating current (AC) signal, usually a sine wave, square wave or a triangle wave, powered by a direct current (DC) source. Oscillators are found ...
generates a higher frequency AC current which drives the coil, because transmission efficiency improves with frequency
Frequency is the number of occurrences of a repeating event per unit of time. Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio ...
.
Inductive coupling is the oldest and most widely used wireless power technology, and virtually the only one so far which is used in commercial products. It is used in inductive charging stands for cordless
The term cordless is generally used to refer to electrical or electronic devices that are powered by a battery (electricity), battery or battery pack and can operate without a power cord or cable attached to an electrical outlet to provide mains ...
appliances used in wet environments such as electric toothbrushes and shavers, to reduce the risk of electric shock. Another application area is "transcutaneous" recharging of biomedical prosthetic devices implanted in the human body, such as cardiac pacemakers, to avoid having wires passing through the skin. It is also used to charge electric vehicle
An electric vehicle (EV) is a motor vehicle whose propulsion is powered fully or mostly by electricity. EVs encompass a wide range of transportation modes, including road vehicle, road and rail vehicles, electric boats and Submersible, submer ...
s such as cars and to either charge or power transit vehicles like buses and trains.
However the fastest growing use is wireless charging pads to recharge mobile and handheld wireless devices such as laptop
A laptop computer or notebook computer, also known as a laptop or notebook, is a small, portable personal computer (PC). Laptops typically have a Clamshell design, clamshell form factor (design), form factor with a flat-panel computer scree ...
and tablet computer
A tablet computer, commonly shortened to tablet, is a mobile device, typically with a mobile operating system and touchscreen display processing circuitry, and a rechargeable battery in a single, thin and flat package. Tablets, being computers ...
s, computer mouse
A computer mouse (plural mice; also mouses) is a hand-held pointing device that detects Plane (mathematics), two-dimensional motion relative to a surface. This motion is typically translated into the motion of the Cursor (user interface)#Po ...
, cellphones, digital media players, and video game controllers. In the United States, the Federal Communications Commission (FCC) provided its first certification for a wireless transmission charging system in December 2017.
The power transferred increases with frequency and the mutual inductance between the coils, which depends on their geometry and the distance between them. A widely used figure of merit is the coupling coefficient . This dimensionless parameter is equal to the fraction of magnetic flux through the transmitter coil that passes through the receiver coil when L2 is open circuited. If the two coils are on the same axis and close together so all the magnetic flux from passes through , and the link efficiency approaches 100%. The greater the separation between the coils, the more of the magnetic field from the first coil misses the second, and the lower and the link efficiency are, approaching zero at large separations. The link efficiency and power transferred is roughly proportional to . In order to achieve high efficiency, the coils must be very close together, a fraction of the coil diameter , usually within centimeters, with the coils' axes aligned. Wide, flat coil shapes are usually used, to increase coupling. Ferrite "flux confinement" cores can confine the magnetic fields, improving coupling and reducing interference to nearby electronics, but they are heavy and bulky so small wireless devices often use air-core coils.
Ordinary inductive coupling can only achieve high efficiency when the coils are very close together, usually adjacent. In most modern inductive systems resonant inductive coupling is used, in which the efficiency is increased by using resonant circuits. This can achieve high efficiencies at greater distances than nonresonant inductive coupling.
Resonant inductive coupling
Resonant inductive coupling (''electrodynamic coupling'', ''strongly coupled magnetic resonance'') is a form of inductive coupling in which power is transferred by magnetic fields ''(B, green)'' between two resonant circuits (tuned circuits), one in the transmitter and one in the receiver. Each resonant circuit consists of a coil of wire connected to a capacitor, or a self-resonant coil or other resonator with internal capacitance. The two are tuned to resonate at the same resonant frequency. The resonance between the coils can greatly increase coupling and power transfer, analogously to the way a vibrating tuning fork can induce sympathetic vibration in a distant fork tuned to the same pitch.
Nikola Tesla
Nikola Tesla (;["Tesla"](_blank)
. ''Random House Webster's Unabridged Dictionary''. ; 10 July 1856 – 7 ...
first discovered resonant coupling during his pioneering experiments in wireless power transfer around the turn of the 20th century, but the possibilities of using resonant coupling to increase transmission range has only recently been explored. In 2007 a team led by Marin Soljačić at MIT used two coupled tuned circuits each made of a 25 cm self-resonant coil of wire at 10 MHz to achieve the transmission of 60 W of power over a distance of (8 times the coil diameter) at around 40% efficiency.
The concept behind resonant inductive coupling systems is that high Q factor resonators exchange energy at a much higher rate than they lose energy due to internal damping. Therefore, by using resonance, the same amount of power can be transferred at greater distances, using the much weaker magnetic fields out in the peripheral regions ("tails") of the near fields. Resonant inductive coupling can achieve high efficiency at ranges of 4 to 10 times the coil diameter (''D''ant). This is called "mid-range" transfer, in contrast to the "short range" of nonresonant inductive transfer, which can achieve similar efficiencies only when the coils are adjacent. Another advantage is that resonant circuits interact with each other so much more strongly than they do with nonresonant objects that power losses due to absorption in stray nearby objects are negligible.
A drawback of resonant coupling theory is that at close ranges when the two resonant circuits are tightly coupled, the resonant frequency of the system is no longer constant but "splits" into two resonant peaks, so the maximum power transfer no longer occurs at the original resonant frequency and the oscillator frequency must be tuned to the new resonance peak.
Resonant technology is currently being widely incorporated in modern inductive wireless power systems. One of the possibilities envisioned for this technology is area wireless power coverage. A coil in the wall or ceiling of a room might be able to wirelessly power lights and mobile devices anywhere in the room, with reasonable efficiency. An environmental and economic benefit of wirelessly powering small devices such as clocks, radios, music players and remote control
A remote control, also known colloquially as a remote or clicker, is an consumer electronics, electronic device used to operate another device from a distance, usually wirelessly. In consumer electronics, a remote control can be used to operat ...
s is that it could drastically reduce the 6 billion batteries disposed of each year, a large source of toxic waste and groundwater contamination.
A study for the Swedish military found that 85 kHz systems for dynamic wireless power transfer for vehicles can cause electromagnetic interference at a radius of up to 300 kilometers.
Capacitive coupling
Capacitive coupling also referred to as electric coupling, makes use of electric fields for the transmission of power between two electrode
An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or a gas). In electrochemical cells, electrodes are essential parts that can consist of a varie ...
s (an anode
An anode usually is an electrode of a polarized electrical device through which conventional current enters the device. This contrasts with a cathode, which is usually an electrode of the device through which conventional current leaves the devic ...
and cathode
A cathode is the electrode from which a conventional current leaves a polarized electrical device such as a lead-acid battery. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. Conventional curren ...
) forming a capacitance
Capacitance is the ability of an object to store electric charge. It is measured by the change in charge in response to a difference in electric potential, expressed as the ratio of those quantities. Commonly recognized are two closely related ...
for the transfer of power. In capacitive coupling (electrostatic induction
Electrostatic induction, also known as "electrostatic influence" or simply "influence" in Europe and Latin America, is a redistribution of electric charge in an object that is caused by the influence of nearby charges. In the presence of a charg ...
), the conjugate of inductive coupling, energy is transmitted by electric fields between electrodes such as metal plates. The transmitter and receiver electrodes form a capacitor, with the intervening space as the dielectric
In electromagnetism, a dielectric (or dielectric medium) is an Insulator (electricity), electrical insulator that can be Polarisability, polarised by an applied electric field. When a dielectric material is placed in an electric field, electric ...
. An alternating voltage generated by the transmitter is applied to the transmitting plate, and the oscillating electric field
An electric field (sometimes called E-field) is a field (physics), physical field that surrounds electrically charged particles such as electrons. In classical electromagnetism, the electric field of a single charge (or group of charges) descri ...
induces an alternating potential on the receiver plate by electrostatic induction, which causes an alternating current to flow in the load circuit. The amount of power transferred increases with the frequency
Frequency is the number of occurrences of a repeating event per unit of time. Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio ...
the square of the voltage, and the capacitance
Capacitance is the ability of an object to store electric charge. It is measured by the change in charge in response to a difference in electric potential, expressed as the ratio of those quantities. Commonly recognized are two closely related ...
between the plates, which is proportional to the area of the smaller plate and (for short distances) inversely proportional to the separation.
Capacitive coupling has only been used practically in a few low power applications, because the very high voltages on the electrodes required to transmit significant power can be hazardous, and can cause unpleasant side effects such as noxious ozone
Ozone () (or trioxygen) is an Inorganic compound, inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , break ...
production. In addition, in contrast to magnetic fields, electric fields interact strongly with most materials, including the human body, due to dielectric polarization. Intervening materials between or near the electrodes can absorb the energy, in the case of humans possibly causing excessive electromagnetic field exposure. However capacitive coupling has a few advantages over inductive coupling. The field is largely confined between the capacitor plates, reducing interference, which in inductive coupling requires heavy ferrite "flux confinement" cores. Also, alignment requirements between the transmitter and receiver are less critical. Capacitive coupling has recently been applied to charging battery powered portable devices as well as charging or continuous wireless power transfer in biomedical implants, and is being considered as a means of transferring power between substrate layers in integrated circuits.
Two types of circuit have been used:
* Transverse (bipolar) design: In this type of circuit, there are two transmitter plates and two receiver plates. Each transmitter plate is coupled to a receiver plate. The transmitter oscillator drives the transmitter plates in opposite phase (180° phase difference) by a high alternating voltage, and the load is connected between the two receiver plates. The alternating electric fields induce opposite phase alternating potentials in the receiver plates, and this "push-pull" action causes current to flow back and forth between the plates through the load. A disadvantage of this configuration for wireless charging is that the two plates in the receiving device must be aligned face to face with the charger plates for the device to work.
* Longitudinal (unipolar) design: In this type of circuit, the transmitter and receiver have only one active electrode, and either the ground or a large passive electrode serves as the return path for the current. The transmitter oscillator is connected between an active and a passive electrode. The load is also connected between an active and a passive electrode. The electric field produced by the transmitter induces alternating charge displacement in the load dipole through electrostatic induction
Electrostatic induction, also known as "electrostatic influence" or simply "influence" in Europe and Latin America, is a redistribution of electric charge in an object that is caused by the influence of nearby charges. In the presence of a charg ...
.
Resonance can also be used with capacitive coupling to extend the range. At the turn of the 20th century, Nikola Tesla
Nikola Tesla (;["Tesla"](_blank)
. ''Random House Webster's Unabridged Dictionary''. ; 10 July 1856 – 7 ...
did the first experiments with both resonant inductive and capacitive coupling.
Electrodynamic wireless power transfer
An electrodynamic wireless power transfer (EWPT) system utilizes a receiver with a mechanically resonating or rotating permanent magnet.[A. Garraud and D. P. Arnold, "Advancements in electrodynamic wireless power transmission", IEEE Sensors Conference, Oct. 2016, 82–84][J. O. Mur-Miranda, S. Cheng and D. P. Arnold, "Improving the efficiency of electrodynamic wireless power transmission," 2013 7th European Conference on Antennas and Propagation (EuCAP), 2013, pp. 2848–2852.] When subjected to a time-varying magnetic field, the mechanical motion of the resonating magnet is converted into electricity by one or more electromechanical transduction schemes (e.g. electromagnetic/induction, piezoelectric, or capacitive). In contrast to inductive coupling systems which usually use high frequency magnetic fields, EWPT uses low-frequency magnetic fields (<1 kHz),[Truong, B.D.; Roundy, S. Wireless Power Transfer System with Center-Clamped Magneto-Mechano-Electric (MME) Receiver: Model Validation and Efficiency Investigation. Smart Mater. Struct. 2019, 28, 015004.][Liu, G.; Ci, P.; Dong, S. Energy Harvesting from Ambient Low-Frequency Magnetic Field using Magneto-Mechano-Electric Composite Cantilever. Appl. Phys. Lett. 2014, 104, 032908.][Garraud, N.; Alabi, D.; Varela, J.D.; Arnold, D.P.; Garraud, A. Microfabricated Electrodynamic Wireless Power Receiver for Bio-implants and Wearables. In Proceedings of the 2018 Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, USA, 3–7 June 2018; pp. 34–37.] which safely pass through conductive media and have higher human field exposure limits (~2 mTrms at 1 kHz),[IEEE. Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz; IEEE Standard C95.1–2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–238.][IEEE. Standard for Safety Levels with Respect to Human Exposure to Electromagnetic Fields, 0–3 kHz; IEEE Standard C95.6-2002; IEEE: Piscataway, NJ, USA, 2002; pp. 1–43.] showing promise for potential use in wirelessly recharging biomedical implants.
For EWPT devices having identical resonant frequencies, the magnitude of power transfer is entirely dependent on critical coupling coefficient, denoted by , between the transmitter and receiver devices. For coupled resonators with same resonant frequencies, wireless power transfer between the transmitter and the receiver is spread over three regimes – under-coupled, critically coupled and over-coupled. As the critical coupling coefficient increases from an under-coupled regime (