HOME

TheInfoList



OR:

In
abstract algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are set (mathematics), sets with specific operation (mathematics), operations acting on their elements. Algebraic structur ...
, the weak dimension of a nonzero right module ''M'' over a ring ''R'' is the largest number ''n'' such that the Tor group \operatorname_n^R(M,N) is nonzero for some left ''R''-module ''N'' (or infinity if no largest such ''n'' exists), and the weak dimension of a left ''R''-module is defined similarly. The weak dimension was introduced by . The weak dimension is sometimes called the flat dimension as it is the shortest length of the resolution of the module by
flat module In algebra, flat modules include free modules, projective modules, and, over a principal ideal domain, torsion-free modules. Formally, a module (mathematics), module ''M'' over a ring (mathematics), ring ''R'' is ''flat'' if taking the tensor prod ...
s. The weak dimension of a module is, at most, equal to its
projective dimension In mathematics, particularly in algebra, the class of projective modules enlarges the class of free modules (that is, modules with basis vectors) over a ring, keeping some of the main properties of free modules. Various equivalent characterizatio ...
. The weak global dimension of a ring is the largest number ''n'' such that \operatorname_n^R(M,N) is nonzero for some right ''R''-module ''M'' and left ''R''-module ''N''. If there is no such largest number ''n'', the weak global dimension is defined to be infinite. It is at most equal to the left or right global dimension of the ring ''R''.


Examples

*The module \Q of
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
s over the ring \Z of
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s has weak dimension 0, but projective dimension 1. *The module \Q/\Z over the ring \Z has weak dimension 1, but injective dimension 0. *The module \Z over the ring \Z has weak dimension 0, but injective dimension 1. *A
Prüfer domain In mathematics, a Prüfer domain is a type of commutative ring that generalizes Dedekind domains in a non-Noetherian context. These rings possess the nice ideal and module theoretic properties of Dedekind domains, but usually only for finitely g ...
has weak global dimension at most 1. *A
Von Neumann regular ring In mathematics, a von Neumann regular ring is a ring ''R'' (associative, with 1, not necessarily commutative) such that for every element ''a'' in ''R'' there exists an ''x'' in ''R'' with . One may think of ''x'' as a "weak inverse" of the eleme ...
has weak global dimension 0. *A product of infinitely many fields has weak global dimension 0 but its global dimension is nonzero. *If a ring is right
Noetherian In mathematics, the adjective Noetherian is used to describe objects that satisfy an ascending or descending chain condition on certain kinds of subobjects, meaning that certain ascending or descending sequences of subobjects must have finite leng ...
, then the right global dimension is the same as the weak global dimension, and is at most the left global dimension. In particular if a ring is right and left Noetherian then the left and right global dimensions and the weak global dimension are all the same. *The triangular matrix ring \begin\Z&\Q \\0&\Q \end has right global dimension 1, weak global dimension 1, but left global dimension 2. It is right Noetherian, but not left Noetherian.


References

* * Commutative algebra Ring theory Homological algebra {{commutative-algebra-stub