HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a Voronoi diagram is a partition of a plane into regions close to each of a given set of objects. In the simplest case, these objects are just finitely many points in the plane (called seeds, sites, or generators). For each seed there is a corresponding
region In geography, regions, otherwise referred to as zones, lands or territories, are areas that are broadly divided by physical characteristics ( physical geography), human impact characteristics ( human geography), and the interaction of humanity an ...
, called a Voronoi cell, consisting of all points of the plane closer to that seed than to any other. The Voronoi diagram of a set of points is dual to that set's Delaunay triangulation. The Voronoi diagram is named after mathematician
Georgy Voronoy Georgy Feodosevich Voronoy (russian: Георгий Феодосьевич Вороной; ukr, Георгій Феодосійович Вороний; 28 April 1868 – 20 November 1908) was an Imperial Russian mathematician of Ukrainian descent ...
, and is also called a Voronoi tessellation, a Voronoi decomposition, a Voronoi partition, or a Dirichlet tessellation (after Peter Gustav Lejeune Dirichlet). Voronoi cells are also known as Thiessen polygons. Voronoi diagrams have practical and theoretical applications in many fields, mainly in
science Science is a systematic endeavor that builds and organizes knowledge in the form of testable explanations and predictions about the universe. Science may be as old as the human species, and some of the earliest archeological evidence ...
and
technology Technology is the application of knowledge to reach practical goals in a specifiable and reproducible way. The word ''technology'' may also mean the product of such an endeavor. The use of technology is widely prevalent in medicine, scien ...
, but also in visual art.


The simplest case

In the simplest case, shown in the first picture, we are given a finite set of points in the
Euclidean plane In mathematics, the Euclidean plane is a Euclidean space of dimension two. That is, a geometric setting in which two real quantities are required to determine the position of each point ( element of the plane), which includes affine notions ...
. In this case each site ''p''''k'' is simply a point, and its corresponding Voronoi cell ''R''''k'' consists of every point in the Euclidean plane whose distance to ''p''''k'' is less than or equal to its distance to any other ''p''''k''. Each such cell is obtained from the intersection of half-spaces, and hence it is a (convex) polyhedron. The line segments of the Voronoi diagram are all the points in the plane that are equidistant to the two nearest sites. The Voronoi vertices (
node In general, a node is a localized swelling (a " knot") or a point of intersection (a vertex). Node may refer to: In mathematics * Vertex (graph theory), a vertex in a mathematical graph * Vertex (geometry), a point where two or more curves, line ...
s) are the points equidistant to three (or more) sites.


Formal definition

Let X be a
metric space In mathematics, a metric space is a set together with a notion of '' distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setti ...
with distance function d. Let K be a set of indices and let (P_k)_ be a
tuple In mathematics, a tuple is a finite ordered list (sequence) of elements. An -tuple is a sequence (or ordered list) of elements, where is a non-negative integer. There is only one 0-tuple, referred to as ''the empty tuple''. An -tuple is defi ...
(ordered collection) of nonempty
subsets In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset o ...
(the sites) in the space X. The Voronoi cell, or Voronoi region, R_k, associated with the site P_k is the set of all points in X whose distance to P_k is not greater than their distance to the other sites P_j, where j is any index different from k. In other words, if d(x,\, A) = \inf\ denotes the distance between the point x and the subset A, then R_k = \ The Voronoi diagram is simply the
tuple In mathematics, a tuple is a finite ordered list (sequence) of elements. An -tuple is a sequence (or ordered list) of elements, where is a non-negative integer. There is only one 0-tuple, referred to as ''the empty tuple''. An -tuple is defi ...
of cells (R_k)_ . In principle, some of the sites can intersect and even coincide (an application is described below for sites representing shops), but usually they are assumed to be disjoint. In addition, infinitely many sites are allowed in the definition (this setting has applications in
geometry of numbers Geometry of numbers is the part of number theory which uses geometry for the study of algebraic numbers. Typically, a ring of algebraic integers is viewed as a lattice in \mathbb R^n, and the study of these lattices provides fundamental informa ...
and crystallography), but again, in many cases only finitely many sites are considered. In the particular case where the space is a
finite-dimensional In mathematics, the dimension of a vector space ''V'' is the cardinality (i.e., the number of vectors) of a basis of ''V'' over its base field. p. 44, §2.36 It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to d ...
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidea ...
, each site is a point, there are finitely many points and all of them are different, then the Voronoi cells are convex polytopes and they can be represented in a combinatorial way using their vertices, sides, two-dimensional faces, etc. Sometimes the induced combinatorial structure is referred to as the Voronoi diagram. In general however, the Voronoi cells may not be convex or even connected. In the usual Euclidean space, we can rewrite the formal definition in usual terms. Each Voronoi polygon R_k is associated with a generator point P_k. Let X be the set of all points in the Euclidean space. Let P_1 be a point that generates its Voronoi region R_1, P_2 that generates R_2, and P_3 that generates R_3, and so on. Then, as expressed by Tran ''et al'', "all locations in the Voronoi polygon are closer to the generator point of that polygon than any other generator point in the Voronoi diagram in Euclidean plane".


Illustration

As a simple illustration, consider a group of shops in a city. Suppose we want to estimate the number of customers of a given shop. With all else being equal (price, products, quality of service, etc.), it is reasonable to assume that customers choose their preferred shop simply by distance considerations: they will go to the shop located nearest to them. In this case the Voronoi cell R_k of a given shop P_k can be used for giving a rough estimate on the number of potential customers going to this shop (which is modeled by a point in our city). For most cities, the distance between points can be measured using the familiar
Euclidean distance In mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment between the two points. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, therefore ...
: :\ell_2 = d\left left(a_1, a_2\right), \left(b_1, b_2\right)\right= \sqrt or the Manhattan distance: :d\left left(a_1, a_2\right), \left(b_1, b_2\right)\right= \left, a_1 - b_1\ + \left, a_2 - b_2\. The corresponding Voronoi diagrams look different for different distance metrics.


Properties

* The dual graph for a Voronoi diagram (in the case of a
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidea ...
with point sites) corresponds to the Delaunay triangulation for the same set of points. * The closest pair of points corresponds to two adjacent cells in the Voronoi diagram. * Assume the setting is the
Euclidean plane In mathematics, the Euclidean plane is a Euclidean space of dimension two. That is, a geometric setting in which two real quantities are required to determine the position of each point ( element of the plane), which includes affine notions ...
and a discrete set of points is given. Then two points of the set are adjacent on the convex hull if and only if their Voronoi cells share an infinitely long side. * If the space is a normed space and the distance to each site is attained (e.g., when a site is a compact set or a closed ball), then each Voronoi cell can be represented as a union of line segments emanating from the sites.. As shown there, this property does not necessarily hold when the distance is not attained. * Under relatively general conditions (the space is a possibly infinite-dimensional
uniformly convex space In mathematics, uniformly convex spaces (or uniformly rotund spaces) are common examples of reflexive Banach spaces. The concept of uniform convexity was first introduced by James A. Clarkson in 1936. Definition A uniformly convex space is a ...
, there can be infinitely many sites of a general form, etc.) Voronoi cells enjoy a certain stability property: a small change in the shapes of the sites, e.g., a change caused by some translation or distortion, yields a small change in the shape of the Voronoi cells. This is the geometric stability of Voronoi diagrams.. As shown there, this property does not hold in general, even if the space is two-dimensional (but non-uniformly convex, and, in particular, non-Euclidean) and the sites are points.


History and research

Informal use of Voronoi diagrams can be traced back to Descartes in 1644. Peter Gustav Lejeune Dirichlet used two-dimensional and three-dimensional Voronoi diagrams in his study of quadratic forms in 1850. British physician John Snow used a Voronoi-like diagram in 1854 to illustrate how the majority of people who died in the
Broad Street cholera outbreak Broad(s) or The Broad(s) may refer to: People * A slang term for a woman. * Broad (surname), a surname Places * Broad Peak, on the border between Pakistan and China, the 12th highest mountain on Earth * The Broads, a network of mostly nav ...
lived closer to the infected
Broad Street pump Soho is an area of the City of Westminster, part of the West End of London. Originally a fashionable district for the aristocracy, it has been one of the main entertainment districts in the capital since the 19th century. The area was develop ...
than to any other water pump. Voronoi diagrams are named after Georgy Feodosievych Voronoy who defined and studied the general ''n''-dimensional case in 1908. Voronoi diagrams that are used in
geophysics Geophysics () is a subject of natural science concerned with the physical processes and physical properties of the Earth and its surrounding space environment, and the use of quantitative methods for their analysis. The term ''geophysics'' so ...
and
meteorology Meteorology is a branch of the atmospheric sciences (which include atmospheric chemistry and physics) with a major focus on weather forecasting. The study of meteorology dates back millennia, though significant progress in meteorology did no ...
to analyse spatially distributed data (such as rainfall measurements) are called Thiessen polygons after American meteorologist
Alfred H. Thiessen Alfred H. Thiessen (April 8, 1872 – June 7, 1956) was an American meteorologist after whom Thiessen polygons are named. Alfred H. Thiessen was born in Troy, New York. He earned a bachelor of science degree from Cornell University in 1898. H ...
. Other equivalent names for this concept (or particular important cases of it): Voronoi polyhedra, Voronoi polygons, domain(s) of influence, Voronoi decomposition, Voronoi tessellation(s), Dirichlet tessellation(s).


Examples

Voronoi tessellations of regular lattices of points in two or three dimensions give rise to many familiar tessellations. * A 2D lattice gives an irregular honeycomb tessellation, with equal hexagons with point symmetry; in the case of a regular triangular lattice it is regular; in the case of a rectangular lattice the hexagons reduce to rectangles in rows and columns; a square lattice gives the regular tessellation of squares; note that the rectangles and the squares can also be generated by other lattices (for example the lattice defined by the vectors (1,0) and (1/2,1/2) gives squares). * A
simple cubic lattice In crystallography, the cubic (or isometric) crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals. There are three main varieties ...
gives the cubic honeycomb. * A hexagonal close-packed lattice gives a tessellation of space with trapezo-rhombic dodecahedra. * A face-centred cubic lattice gives a tessellation of space with
rhombic dodecahedra Rhombic may refer to: *Rhombus, a quadrilateral whose four sides all have the same length (often called a diamond) *Rhombic antenna, a broadband directional antenna most commonly used on shortwave frequencies * polyhedra formed from rhombuses, such ...
. * A body-centred cubic lattice gives a tessellation of space with truncated octahedra. * Parallel planes with regular triangular lattices aligned with each other's centers give the hexagonal prismatic honeycomb. * Certain body-centered tetragonal lattices give a tessellation of space with rhombo-hexagonal dodecahedra. For the set of points (''x'', ''y'') with ''x'' in a discrete set ''X'' and ''y'' in a discrete set ''Y'', we get rectangular tiles with the points not necessarily at their centers.


Higher-order Voronoi diagrams

Although a normal Voronoi cell is defined as the set of points closest to a single point in ''S'', an ''n''th-order Voronoi cell is defined as the set of points having a particular set of ''n'' points in ''S'' as its ''n'' nearest neighbors. Higher-order Voronoi diagrams also subdivide space. Higher-order Voronoi diagrams can be generated recursively. To generate the ''n''th-order Voronoi diagram from set ''S'', start with the (''n'' − 1)th-order diagram and replace each cell generated by ''X'' =  with a Voronoi diagram generated on the set ''S'' − ''X''.


Farthest-point Voronoi diagram

For a set of ''n'' points the (''n'' − 1)th-order Voronoi diagram is called a farthest-point Voronoi diagram. For a given set of points ''S'' =  the farthest-point Voronoi diagram divides the plane into cells in which the same point of ''P'' is the farthest point. A point of ''P'' has a cell in the farthest-point Voronoi diagram if and only if it is a vertex of the convex hull of ''P''. Let ''H'' =  be the convex hull of ''P''; then the farthest-point Voronoi diagram is a subdivision of the plane into ''k'' cells, one for each point in ''H'', with the property that a point ''q'' lies in the cell corresponding to a site ''h''''i'' if and only if d(''q'', ''h''''i'') > d(''q'', ''p''''j'') for each ''p''''j'' ∈ ''S'' with ''h''''i'' ≠ ''p''''j'', where d(''p'', ''q'') is the
Euclidean distance In mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment between the two points. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, therefore ...
between two points ''p'' and ''q''. 7.4 Farthest-Point Voronoi Diagrams. Includes a description of the algorithm. The boundaries of the cells in the farthest-point Voronoi diagram have the structure of a topological tree, with infinite rays as its leaves. Every finite tree is isomorphic to the tree formed in this way from a farthest-point Voronoi diagram.


Generalizations and variations

As implied by the definition, Voronoi cells can be defined for metrics other than Euclidean, such as the Mahalanobis distance or Manhattan distance. However, in these cases the boundaries of the Voronoi cells may be more complicated than in the Euclidean case, since the equidistant locus for two points may fail to be subspace of codimension 1, even in the two-dimensional case. A
weighted Voronoi diagram In mathematics, a weighted Voronoi diagram in ''n'' dimensions is a generalization of a Voronoi diagram. The Voronoi cells in a weighted Voronoi diagram are defined in terms of a distance function. The distance function may specify the usual Eucl ...
is the one in which the function of a pair of points to define a Voronoi cell is a distance function modified by multiplicative or additive weights assigned to generator points. In contrast to the case of Voronoi cells defined using a distance which is a
metric Metric or metrical may refer to: * Metric system, an internationally adopted decimal system of measurement * An adjective indicating relation to measurement in general, or a noun describing a specific type of measurement Mathematics In mathe ...
, in this case some of the Voronoi cells may be empty. A
power diagram In computational geometry, a power diagram, also called a Laguerre–Voronoi diagram, Dirichlet cell complex, radical Voronoi tesselation or a sectional Dirichlet tesselation, is a partition of the Euclidean plane into polygonal cells defined from ...
is a type of Voronoi diagram defined from a set of circles using the power distance; it can also be thought of as a weighted Voronoi diagram in which a weight defined from the radius of each circle is added to the squared Euclidean distance from the circle's center. The Voronoi diagram of n points in d-dimensional space can have O(n^) vertices, requiring the same bound for the amount of memory needed to store an explicit description of it. Therefore, Voronoi diagrams are often not feasible for moderate or high dimensions. A more space-efficient alternative is to use
approximate Voronoi diagram An approximation is anything that is intentionally similar but not exactly equal to something else. Etymology and usage The word ''approximation'' is derived from Latin ''approximatus'', from ''proximus'' meaning ''very near'' and the prefix ...
s. Voronoi diagrams are also related to other geometric structures such as the
medial axis The medial axis of an object is the set of all points having more than one closest point on the object's boundary. Originally referred to as the topological skeleton, it was introduced in 1967 by Harry Blum as a tool for biological shape recog ...
(which has found applications in image segmentation,
optical character recognition Optical character recognition or optical character reader (OCR) is the electronic or mechanical conversion of images of typed, handwritten or printed text into machine-encoded text, whether from a scanned document, a photo of a document, a sc ...
, and other computational applications), straight skeleton, and
zone diagram A zone diagram is a certain geometric object which a variation on the notion of Voronoi diagram. It was introduced by Tetsuo Asano, Jiri Matousek, and Takeshi Tokuyama in 2007. Formally, it is a fixed point of a certain function. Its existence ...
s.


Applications


Meteorology/Hydrology

It is used in meteorology and engineering hydrology to find the weights for precipitation data of stations over an area (watershed). The points generating the polygons are the various station that record precipitation data. Perpendicular bisectors are drawn to the line joining any two stations. This results in the formation of polygons around the stations. The area (A_i) touching station point is known as influence area of the station. The average precipitation is calculated by the formula \bar=\frac


Humanities

*In classical archaeology, specifically
art history Art history is the study of aesthetic objects and visual expression in historical and stylistic context. Traditionally, the discipline of art history emphasized painting, drawing, sculpture, architecture, ceramics and decorative arts; yet today, ...
, the symmetry of statue heads is analyzed to determine the type of statue a severed head may have belonged to. An example of this that made use of Voronoi cells was the identification of the Sabouroff head, which made use of a high-resolution polygon mesh. *In
dialectometry Dialectometry is the quantitative and computational branch of dialectology, the study of dialect. This sub-field of linguistics studies language variation using the methods of statistics; it arose in the 1970s and 80s as a result of seminal wo ...
, Voronoi cells are used to indicate a supposed linguistic continuity between survey points.


Natural sciences

*In
biology Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary ...
, Voronoi diagrams are used to model a number of different biological structures, including
cells Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery w ...
and bone microarchitecture. Indeed, Voronoi tessellations work as a geometrical tool to understand the physical constraints that drive the organization of biological tissues. *In
hydrology Hydrology () is the scientific study of the movement, distribution, and management of water on Earth and other planets, including the water cycle, water resources, and environmental watershed sustainability. A practitioner of hydrology is call ...
, Voronoi diagrams are used to calculate the rainfall of an area, based on a series of point measurements. In this usage, they are generally referred to as Thiessen polygons. *In
ecology Ecology () is the study of the relationships between living organisms, including humans, and their physical environment. Ecology considers organisms at the individual, population, community, ecosystem, and biosphere level. Ecology overl ...
, Voronoi diagrams are used to study the growth patterns of forests and forest canopies, and may also be helpful in developing predictive models for forest fires. *In computational chemistry, ligand-binding sites are transformed into Voronoi diagrams for
machine learning Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 'learn', that is, methods that leverage data to improve performance on some set of tasks. It is seen as a part of artificial intelligence. Machine ...
applications (e.g., to classify binding pockets in proteins). In other applications, Voronoi cells defined by the positions of the nuclei in a molecule are used to compute atomic charges. This is done using the Voronoi deformation density method. *In
astrophysics Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline said, Astrophysics "seeks to ascertain the nature of the h ...
, Voronoi diagrams are used to generate adaptative smoothing zones on images, adding signal fluxes on each one. The main objective of these procedures is to maintain a relatively constant signal-to-noise ratio on all the images. *In
computational fluid dynamics Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis and data structures to analyze and solve problems that involve fluid flows. Computers are used to perform the calculations required to simulate ...
, the Voronoi tessellation of a set of points can be used to define the computational domains used in
finite volume The finite volume method (FVM) is a method for representing and evaluating partial differential equations in the form of algebraic equations. In the finite volume method, volume integrals in a partial differential equation that contain a divergenc ...
methods, e.g. as in the moving-mesh cosmology code AREPO. *In computational physics, Voronoi diagrams are used to calculate profiles of an object with Shadowgraph and proton radiography in
High energy density physics High-energy-density physics (HEDP) is a new subfield of physics intersecting condensed matter physics, nuclear physics, astrophysics and plasma physics. It has been defined as the physics of matter and radiation at energy densities in excess of abo ...
.


Health

*In
medical diagnosis Medical diagnosis (abbreviated Dx, Dx, or Ds) is the process of determining which disease or condition explains a person's symptoms and signs. It is most often referred to as diagnosis with the medical context being implicit. The information r ...
, models of muscle tissue, based on Voronoi diagrams, can be used to detect neuromuscular diseases. *In
epidemiology Epidemiology is the study and analysis of the distribution (who, when, and where), patterns and determinants of health and disease conditions in a defined population. It is a cornerstone of public health, and shapes policy decisions and evi ...
, Voronoi diagrams can be used to correlate sources of infections in epidemics. One of the early applications of Voronoi diagrams was implemented by John Snow to study the
1854 Broad Street cholera outbreak Events January–March * January 4 – The McDonald Islands are discovered by Captain William McDonald aboard the ''Samarang''. * January 6 – The fictional detective Sherlock Holmes is perhaps born. * January 9 – The Teut ...
in Soho, England. He showed the correlation between residential areas on the map of Central London whose residents had been using a specific water pump, and the areas with the most deaths due to the outbreak.


Engineering

*In polymer physics, Voronoi diagrams can be used to represent free volumes of polymers. *In materials science, polycrystalline microstructures in metallic alloys are commonly represented using Voronoi tessellations. In island growth, the Voronoi diagram is used to estimate the growth rate of individual islands. In solid-state physics, the Wigner-Seitz cell is the Voronoi tessellation of a solid, and the Brillouin zone is the Voronoi tessellation of reciprocal (
wavenumber In the physical sciences, the wavenumber (also wave number or repetency) is the '' spatial frequency'' of a wave, measured in cycles per unit distance (ordinary wavenumber) or radians per unit distance (angular wavenumber). It is analogous to te ...
) space of crystals which have the symmetry of a space group. *In
aviation Aviation includes the activities surrounding mechanical flight and the aircraft industry. ''Aircraft'' includes airplane, fixed-wing and helicopter, rotary-wing types, morphable wings, wing-less lifting bodies, as well as aerostat, lighter- ...
, Voronoi diagrams are superimposed on oceanic plotting charts to identify the nearest airfield for in-flight diversion (see
ETOPS ETOPS () is an acronym for ''Extended-range Twin-engine Operations Performance Standards''—a special part of flight rules for one-engine-inoperative flight conditions. The International Civil Aviation Organization (ICAO) coined the acronym for ...
), as an aircraft progresses through its flight plan. *In
architecture Architecture is the art and technique of designing and building, as distinguished from the skills associated with construction. It is both the process and the product of sketching, conceiving, planning, designing, and constructing buildings ...
, Voronoi patterns were the basis for the winning entry for the redevelopment of
The Arts Centre Gold Coast Home of the Arts (HOTA), opened as the Keith Hunt Community Entertainment and Arts Centre in 1986 and subsequently renamed The Arts Centre Gold Coast (TAC) and Gold Coast Arts Centre, is a cultural precinct situated in Surfers Paradise, City of ...
. *In
urban planning Urban planning, also known as town planning, city planning, regional planning, or rural planning, is a technical and political process that is focused on the development and design of land use and the built environment, including air, water, ...
, Voronoi diagrams can be used to evaluate the Freight Loading Zone system. *In
mining Mining is the extraction of valuable minerals or other geological materials from the Earth, usually from an ore body, lode, vein, seam, reef, or placer deposit. The exploitation of these deposits for raw material is based on the econom ...
, Voronoi polygons are used to estimate the reserves of valuable materials, minerals, or other resources. Exploratory drillholes are used as the set of points in the Voronoi polygons. *In surface metrology, Voronoi tessellation can be used for surface roughness modeling. *In
robotics Robotics is an interdisciplinary branch of computer science and engineering. Robotics involves design, construction, operation, and use of robots. The goal of robotics is to design machines that can help and assist humans. Robotics integrat ...
, some of the control strategies and path planning algorithms of multi-robot systems are based on the Voronoi partitioning of the environment.


Geometry

*A point location data structure can be built on top of the Voronoi diagram in order to answer nearest neighbor queries, where one wants to find the object that is closest to a given query point. Nearest neighbor queries have numerous applications. For example, one might want to find the nearest hospital or the most similar object in a
database In computing, a database is an organized collection of data stored and accessed electronically. Small databases can be stored on a file system, while large databases are hosted on computer clusters or cloud storage. The design of databases ...
. A large application is vector quantization, commonly used in data compression. *In
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, Voronoi diagrams can be used to find the largest empty circle amid a set of points, and in an enclosing polygon; e.g. to build a new supermarket as far as possible from all the existing ones, lying in a certain city. *Voronoi diagrams together with farthest-point Voronoi diagrams are used for efficient algorithms to compute the
roundness Roundness is the measure of how closely the shape of an object approaches that of a mathematically perfect circle. Roundness applies in two dimensions, such as the cross sectional circles along a cylindrical object such as a shaft or a cylindr ...
of a set of points. The Voronoi approach is also put to use in the evaluation of circularity/
roundness Roundness is the measure of how closely the shape of an object approaches that of a mathematically perfect circle. Roundness applies in two dimensions, such as the cross sectional circles along a cylindrical object such as a shaft or a cylindr ...
while assessing the dataset from a
coordinate-measuring machine A coordinate measuring machine (CMM) is a device that measures the geometry of physical objects by sensing discrete points on the surface of the object with a probe. Various types of probes are used in CMMs, the most common being mechanical and ...
.


Informatics

*In
networking Network, networking and networked may refer to: Science and technology * Network theory, the study of graphs as a representation of relations between discrete objects * Network science, an academic field that studies complex networks Mathematic ...
, Voronoi diagrams can be used in derivations of the capacity of a
wireless network A wireless network is a computer network that uses wireless data connections between network nodes. Wireless networking is a method by which homes, telecommunications networks and business installations avoid the costly process of introducing ...
. *In
computer graphics Computer graphics deals with generating images with the aid of computers. Today, computer graphics is a core technology in digital photography, film, video games, cell phone and computer displays, and many specialized applications. A great de ...
, Voronoi diagrams are used to calculate 3D shattering / fracturing geometry patterns. It is also used to procedurally generate organic or lava-looking textures. * In autonomous robot navigation, Voronoi diagrams are used to find clear routes. If the points are obstacles, then the edges of the graph will be the routes furthest from obstacles (and theoretically any collisions). *In
machine learning Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 'learn', that is, methods that leverage data to improve performance on some set of tasks. It is seen as a part of artificial intelligence. Machine ...
, Voronoi diagrams are used to do 1-NN classifications. *In global scene reconstruction, including with random sensor sites and unsteady wake flow, geophysical data, and 3D turbulence data, Voronoi tesselations are used with
deep learning Deep learning (also known as deep structured learning) is part of a broader family of machine learning methods based on artificial neural networks with representation learning. Learning can be supervised, semi-supervised or unsupervised. ...
. *In user interface development, Voronoi patterns can be used to compute the best hover state for a given point.


Civics and planning

* In
Melbourne Melbourne ( ; Boonwurrung/ Woiwurrung: ''Narrm'' or ''Naarm'') is the capital and most populous city of the Australian state of Victoria, and the second-most populous city in both Australia and Oceania. Its name generally refers to a metro ...
, government school students are always eligible to attend the nearest primary school or high school to where they live, as measured by a straight-line distance. The map of school zones is therefore a Voronoi diagram.


Bakery

* Ukrainian Pastry chef
Dinara Kasko Dinara Kasko is a Ukrainian baker and media figure notable for her usage of 3D printing in cake baking. Biography Kasko was born in Ukraine. She studied to be an architect but chose to retire from her career as a 3D visualizer and take up baki ...
uses the mathematical principles of the Voronoi diagram to create silicone molds made with a 3D printer to shape her original cakes.


Algorithms

Several efficient algorithms are known for constructing Voronoi diagrams, either directly (as the diagram itself) or indirectly by starting with a Delaunay triangulation and then obtaining its dual. Direct algorithms include Fortune's algorithm, an O(''n'' log(''n'')) algorithm for generating a Voronoi diagram from a set of points in a plane. Bowyer–Watson algorithm, an O(''n'' log(''n'')) to O(''n''2) algorithm for generating a Delaunay triangulation in any number of dimensions, can be used in an indirect algorithm for the Voronoi diagram. The
Jump Flooding Algorithm The jump flooding algorithm (JFA) is a flooding algorithm used in the construction of Voronoi diagrams and distance transforms. The JFA was introduced at an ACM symposium in 2006. The JFA has desirable attributes in GPU computation, notably cons ...
can generate approximate Voronoi diagrams in constant time and is suited for use on commodity graphics hardware. Lloyd's algorithm and its generalization via the
Linde–Buzo–Gray algorithm The Linde–Buzo–Gray algorithm (introduced by Yoseph Linde, Andrés Buzo and Robert M. Gray in 1980) is a vector quantization algorithm to derive a good codebook A codebook is a type of document used for gathering and storing cryptography ...
(aka k-means clustering), use the construction of Voronoi diagrams as a subroutine. These methods alternate between steps in which one constructs the Voronoi diagram for a set of seed points, and steps in which the seed points are moved to new locations that are more central within their cells. These methods can be used in spaces of arbitrary dimension to iteratively converge towards a specialized form of the Voronoi diagram, called a
Centroidal Voronoi tessellation In geometry, a centroidal Voronoi tessellation (CVT) is a special type of Voronoi tessellation in which the generating point of each Voronoi cell is also its centroid (center of mass). It can be viewed as an optimal partition corresponding to an ...
, where the sites have been moved to points that are also the geometric centers of their cells.


See also

* Delaunay triangulation *
Map segmentation In mathematics, the map segmentation problem is a kind of optimization problem. It involves a certain geographic region that has to be partitioned into smaller sub-regions in order to achieve a certain goal. Typical optimization objectives include: ...
*
Natural element method The natural element method (NEM) is a meshless method to solve partial differential equation, where the ''elements'' do not have a predefined shape as in the finite element method, but depend on the geometry. A Voronoi diagram In mathematics, ...
* Natural neighbor interpolation *
Nearest-neighbor interpolation Nearest-neighbor interpolation (also known as proximal interpolation or, in some contexts, point sampling) is a simple method of multivariate interpolation in one or more dimensions. Interpolation is the problem of approximating the value of ...
*
Power diagram In computational geometry, a power diagram, also called a Laguerre–Voronoi diagram, Dirichlet cell complex, radical Voronoi tesselation or a sectional Dirichlet tesselation, is a partition of the Euclidean plane into polygonal cells defined from ...
*
Voronoi pole In geometry, the positive and negative Voronoi poles of a cell in a Voronoi diagram are certain vertices of the diagram. Definition Let V be the Voronoi diagram for a set of sites P, and let V_p be the Voronoi cell of V corresponding to a site ...


Notes


References

* * * ''Includes a description of Fortune's algorithm.'' * * * * * * * *


External links

*
Voronoi Diagrams
in
CGAL The Computational Geometry Algorithms Library (CGAL) is an open source software library of computational geometry algorithms. While primarily written in C++, Scilab bindings and bindings generated with SWIG (supporting Python and Java for now) are ...
, the Computational Geometry Algorithms Library {{DEFAULTSORT:Voronoi Diagram Discrete geometry Computational geometry Diagrams Ukrainian inventions Russian inventions