Voltage-dependent Calcium Channel
   HOME

TheInfoList



OR:

Voltage-gated calcium channels (VGCCs), also known as voltage-dependent calcium channels (VDCCs), are a group of voltage-gated ion channels found in the
membrane A membrane is a selective barrier; it allows some things to pass through but stops others. Such things may be molecules, ions, or other small particles. Membranes can be generally classified into synthetic membranes and biological membranes. Bi ...
of excitable cells (''e.g.''
muscle Muscle is a soft tissue, one of the four basic types of animal tissue. There are three types of muscle tissue in vertebrates: skeletal muscle, cardiac muscle, and smooth muscle. Muscle tissue gives skeletal muscles the ability to muscle contra ...
, glial cells,
neuron A neuron (American English), neurone (British English), or nerve cell, is an membrane potential#Cell excitability, excitable cell (biology), cell that fires electric signals called action potentials across a neural network (biology), neural net ...
s) with a permeability to the
calcium Calcium is a chemical element; it has symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar to it ...
ion Ca2+. These channels are slightly permeable to sodium ions, so they are also called Ca2+–Na+ channels, but their permeability to calcium is about 1000-fold greater than to sodium under normal physiological conditions. At physiologic or resting
membrane potential Membrane potential (also transmembrane potential or membrane voltage) is the difference in electric potential between the interior and the exterior of a biological cell. It equals the interior potential minus the exterior potential. This is th ...
, VGCCs are normally closed. They are activated (''i.e.'': opened) at depolarized membrane potentials and this is the source of the "voltage-gated"
epithet An epithet (, ), also a byname, is a descriptive term (word or phrase) commonly accompanying or occurring in place of the name of a real or fictitious person, place, or thing. It is usually literally descriptive, as in Alfred the Great, Suleima ...
. The concentration of
calcium Calcium is a chemical element; it has symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar to it ...
(Ca2+ ions) is normally several thousand times higher outside the cell than inside. Activation of particular VGCCs allows a Ca2+ influx into the cell, which, depending on the cell type, results in activation of calcium-sensitive potassium channels, muscular contraction, excitation of neurons, up-regulation of
gene expression Gene expression is the process (including its Regulation of gene expression, regulation) by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, proteins or non-coding RNA, ...
, or release of
hormone A hormone (from the Ancient Greek, Greek participle , "setting in motion") is a class of cell signaling, signaling molecules in multicellular organisms that are sent to distant organs or tissues by complex biological processes to regulate physio ...
s or
neurotransmitter A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a Chemical synapse, synapse. The cell receiving the signal, or target cell, may be another neuron, but could also be a gland or muscle cell. Neurotra ...
s. VGCCs have been immunolocalized in the zona glomerulosa of normal and hyperplastic human adrenal, as well as in
aldosterone Aldosterone is the main mineralocorticoid steroid hormone produced by the zona glomerulosa of the adrenal cortex in the adrenal gland. It is essential for sodium conservation in the kidney, salivary glands, sweat glands, and colon. It plays ...
-producing adenomas (APA), and in the latter T-type VGCCs correlated with plasma aldosterone levels of patients. Excessive activation of VGCCs is a major component of
excitotoxicity In excitotoxicity, neuron, nerve cells suffer damage or death when the levels of otherwise necessary and safe neurotransmitters such as glutamic acid, glutamate become pathologically high, resulting in excessive stimulation of cell surface recept ...
, as severely elevated levels of intracellular calcium activates enzymes which, at high enough levels, can degrade essential cellular structures.


Structure

Voltage-gated calcium channels are formed as a complex of several different subunits: α1, α2δ, β1-4, and γ. The α1 subunit forms the ion-conducting pore while the associated subunits have several functions including modulation of gating.


Channel subunits

There are several different kinds of high-voltage-gated calcium channels (HVGCCs). They are structurally homologous among varying types; they are all similar, but not structurally identical. In the laboratory, it is possible to tell them apart by studying their physiological roles and/or inhibition by specific
toxin A toxin is a naturally occurring poison produced by metabolic activities of living cells or organisms. They occur especially as proteins, often conjugated. The term was first used by organic chemist Ludwig Brieger (1849–1919), derived ...
s. High-voltage-gated calcium channels include the neural N-type channel blocked by ω- conotoxin GVIA, the R-type channel (R stands for Resistant to the other blockers and toxins, except SNX-482) involved in poorly defined processes in the
brain The brain is an organ (biology), organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It consists of nervous tissue and is typically located in the head (cephalization), usually near organs for ...
, the closely related P/Q-type channel blocked by ω- agatoxins, and the dihydropyridine-sensitive L-type channels responsible for excitation-contraction coupling of skeletal, smooth, and cardiac muscle and for hormone secretion in endocrine cells. Reference for the table can be found at Dunlap, Luebke and Turner (1995).


α1 Subunit

The α1 subunit pore (~190 kDa in molecular mass) is the primary subunit necessary for channel functioning in the HVGCC, and consists of the characteristic four homologous I–IV domains containing six transmembrane α-helices each. The α1 subunit forms the Ca2+ selective pore, which contains voltage-sensing machinery and the drug/toxin-binding sites. A total of ten α1 subunits that have been identified in humans: α1 subunit contains 4 homologous domains (labeled I–IV), each containing 6 transmembrane helices (S1–S6). This arrangement is analogous to a homo-tetramer formed by single-domain subunits of voltage-gated potassium channels (that also each contain 6 TM helices). The 4-domain architecture (and several key regulatory sites, such as the EF hand and IQ domain at the C-terminus) is also shared by the voltage gated sodium channels, which are thought to be evolutionarily related to VGCCs. The transmembrane helices from the 4 domains line up to form the channel proper; S5 and S6 helices are thought to line the inner pore surface, while S1–4 helices have roles in gating and voltage sensing (S4 in particular). VGCCs are subject to rapid inactivation, which is thought to consist of 2 components: voltage-gated (VGI) and calcium-gated (CGI). These are distinguished by using either Ba2+ or Ca2+ as the charge carrier in the external recording solution (''in vitro''). The CGI component is attributed to the binding of the Ca2+-binding signaling protein calmodulin (CaM) to at least 1 site on the channel, as Ca2+-null CaM mutants abolish CGI in L-type channels. Not all channels exhibit the same regulatory properties and the specific details of these mechanisms are still largely unknown.


α2δ Subunit

The α2δ gene forms two subunits: α2 and δ (which are both the product of the same gene). They are linked to each other via a disulfide bond and have a combined molecular weight of 170 kDa. The α2 is the extracellular glycosylated subunit that interacts the most with the α1 subunit. The δ subunit has a single transmembrane region with a short intracellular portion, which serves to anchor the protein in the plasma membrane. There are 4 α2δ genes: * CACNA2D1 (), * CACNA2D2 (), * (), * (). Co-expression of the α2δ enhances the level of expression of the α1 subunit and causes an increase in current amplitude, faster activation and inactivation kinetics and a hyperpolarizing shift in the voltage dependence of inactivation. Some of these effects are observed in the absence of the beta subunit, whereas, in other cases, the co-expression of beta is required. The α2δ-1 and α2δ-2 subunits are the binding site for
gabapentinoid Gabapentinoids, also known as α2δ ligands, are a class of drugs that are chemically chemical derivative, derivatives of the inhibitory neurotransmitter gamma-Aminobutyric acid (GABA) (i.e., GABA analogues) which Voltage-dependent calcium cha ...
s. This drug class includes two anticonvulsant drugs, gabapentin (Neurontin) and
pregabalin Pregabalin, sold under the brand name Lyrica among others, is an anticonvulsant, analgesic, and anxiolytic amino acid medication used to treat epilepsy, neuropathic pain, fibromyalgia, restless legs syndrome, opioid withdrawal, generalized anx ...
(Lyrica), that also find use in treating chronic neuropathic pain. The α2δ subunit is also a binding site of the central depressant and anxiolytic
phenibut Phenibut, sold under the brand name Anvifen among others, is a central nervous system (CNS) depressant with anxiolytic effects, and is used to treat anxiety, insomnia, and for a variety of other indications. It is usually taken oral administrat ...
, in addition to actions at other targets.


β Subunit

The intracellular β subunit (55 kDa) is an intracellular MAGUK-like protein (Membrane-Associated Guanylate Kinase) containing a guanylate kinase (GK) domain and an SH3 (src homology 3) domain. The guanylate kinase domain of the β subunit binds to the α1 subunit I-II cytoplasmic loop and regulates HVGCC activity. There are four known genes for the β subunit: * CACNB1 (), * CACNB2 (), * CACNB3 (), * CACNB4 (). It is hypothesized that the cytosolic β subunit has a major role in stabilizing the final α1 subunit conformation and delivering it to the cell membrane by its ability to mask an
endoplasmic reticulum The endoplasmic reticulum (ER) is a part of a transportation system of the eukaryote, eukaryotic cell, and has many other important functions such as protein folding. The word endoplasmic means "within the cytoplasm", and reticulum is Latin for ...
retention signal in the α1 subunit. The endoplasmic retention brake is contained in the I–II loop in the α1 subunit that becomes masked when the β subunit binds. Therefore, the β subunit functions initially to regulate the current density by controlling the amount of α1 subunit expressed at the cell membrane. In addition to this trafficking role, the β subunit has the added important functions of regulating the activation and inactivation kinetics, and hyperpolarizing the voltage-dependence for activation of the α1 subunit pore, so that more current passes for smaller
depolarization In biology, depolarization or hypopolarization is a change within a cell (biology), cell, during which the cell undergoes a shift in electric charge distribution, resulting in less negative charge inside the cell compared to the outside. Depolar ...
s. The β subunit has effects on the kinetics of the cardiac α1C in '' Xenopus laevis'' oocytes co-expressed with β subunits. The β subunit acts as an important modulator of channel electrophysiological properties. Until very recently, the interaction between a highly conserved 18-
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
region on the α1 subunit intracellular linker between domains I and II (the Alpha Interaction Domain, AID) and a region on the GK domain of the β subunit (Alpha Interaction Domain Binding Pocket) was thought to be solely responsible for the regulatory effects by the β subunit. Recently, it has been discovered that the SH3 domain of the β subunit also gives added regulatory effects on channel function, opening the possibility of the β subunit having multiple regulatory interactions with the α1 subunit pore. Furthermore, the AID sequence does not appear to contain an endoplasmic reticulum retention signal, and this may be located in other regions of the I–II α1 subunit linker.


γ Subunit

The γ1 subunit is known to be associated with skeletal muscle VGCC complexes, but the evidence is inconclusive regarding other subtypes of calcium channel. The γ1 subunit glycoprotein (33 kDa) is composed of four transmembrane spanning helices. The γ1 subunit does not affect trafficking, and, for the most part, is not required to regulate the channel complex. However, γ2, γ3, γ4 and γ8 are also associated with AMPA glutamate receptors. There are 8 genes for gamma subunits: * γ1 (), * γ2 (), * γ3 (), * γ4 (), * (), * (), * (), and * ().


Muscle physiology

When a smooth muscle cell is depolarized, it causes opening of the voltage-gated (L-type) calcium channels. Depolarization may be brought about by stretching of the cell, agonist-binding its G protein-coupled receptor ( GPCR), or
autonomic nervous system The autonomic nervous system (ANS), sometimes called the visceral nervous system and formerly the vegetative nervous system, is a division of the nervous system that operates viscera, internal organs, smooth muscle and glands. The autonomic nervo ...
stimulation. Opening of the L-type calcium channel causes influx of extracellular Ca2+, which then binds calmodulin. The activated calmodulin molecule activates myosin light-chain kinase (MLCK), which phosphorylates the
myosin Myosins () are a Protein family, family of motor proteins (though most often protein complexes) best known for their roles in muscle contraction and in a wide range of other motility processes in eukaryotes. They are adenosine triphosphate, ATP- ...
in thick filaments. Phosphorylated myosin is able to form crossbridges with
actin Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils. It is found in essentially all eukaryotic cells, where it may be present at a concentration of ...
thin filaments, and the smooth muscle fiber (i.e., cell) contracts via the sliding filament mechanism. (See reference for an illustration of the signaling cascade involving L-type calcium channels in smooth muscle). L-type calcium channels are also enriched in the t-tubules of striated muscle cells, i.e., skeletal and cardiac myofibers. When these cells are depolarized, the L-type calcium channels open as in smooth muscle. In skeletal muscle, the actual opening of the channel, which is mechanically gated to a calcium-release channel (a.k.a. ryanodine receptor, or RYR) in the sarcoplasmic reticulum (SR), causes opening of the RYR. In cardiac muscle, opening of the L-type calcium channel permits influx of calcium into the cell. The calcium binds to the calcium release channels (RYRs) in the SR, opening them; this phenomenon is called " calcium-induced calcium release", or CICR. However the RYRs are opened, either through mechanical-gating or CICR, Ca2+ is released from the SR and is able to bind to troponin C on the actin filaments. The muscles then contract through the sliding filament mechanism, causing shortening of sarcomeres and muscle contraction.


Changes in expression during development

Early in development, there is a high amount of expression of T-type calcium channels. During maturation of the nervous system, the expression of N or L-type currents becomes more prominent. As a result, mature neurons express more calcium channels that will only be activated when the cell is significantly depolarized. The different expression levels of low-voltage activated (LVA) and high-voltage activated (HVA) channels can also play an important role in neuronal differentiation. In developing
Xenopus ''Xenopus'' () (Gk., ξενος, ''xenos'' = strange, πους, ''pous'' = foot, commonly known as the clawed frog) is a genus of highly aquatic frogs native to sub-Saharan Africa. Twenty species are currently described with ...
spinal neurons LVA calcium channels carry a spontaneous calcium transient that may be necessary for the neuron to adopt a GABAergic phenotype as well as process outgrowth.


Clinical significance

Voltage-gated calcium channels antibodies are associated with Lambert-Eaton myasthenic syndrome and have also been implicated in paraneoplastic cerebellar degeneration. Voltage-gated calcium channels are also associated with malignant hyperthermia and
Timothy syndrome Timothy syndrome is a rare autosomal dominant, autosomal-dominant disorder characterized by physical malformations, as well as neurological and developmental defects, including heart LQTS, QT-prolongation, heart arrhythmias, structural heart defec ...
. Mutations of the ''CACNA1C'' gene, with a
single-nucleotide polymorphism In genetics and bioinformatics, a single-nucleotide polymorphism (SNP ; plural SNPs ) is a germline substitution of a single nucleotide at a specific position in the genome. Although certain definitions require the substitution to be present in a ...
in the third intron of the Cav1.2 gene, are associated with a variant of long QT syndrome called Timothy's syndrome and also with Brugada syndrome. Large-scale genetic analyses have shown the possibility that ''CACNA1C'' is associated with
bipolar disorder Bipolar disorder (BD), previously known as manic depression, is a mental disorder characterized by periods of Depression (mood), depression and periods of abnormally elevated Mood (psychology), mood that each last from days to weeks, and in ...
* and subsequently also with
schizophrenia Schizophrenia () is a mental disorder characterized variously by hallucinations (typically, Auditory hallucination#Schizophrenia, hearing voices), delusions, thought disorder, disorganized thinking and behavior, and Reduced affect display, f ...
. Also, a ''CACNA1C'' risk allele has been associated to a disruption in brain connectivity in patients with bipolar disorder, while not or only to a minor degree, in their unaffected relatives or healthy controls.


See also

*
Glutamate receptor Glutamate receptors are synaptic and non synaptic receptors located primarily on the membranes of neuronal and glial cells. Glutamate (the conjugate base of glutamic acid) is abundant in the human body, but particularly in the nervous system ...
s * Inositol triphosphate receptor *
Ion channel Ion channels are pore-forming membrane proteins that allow ions to pass through the channel pore. Their functions include establishing a resting membrane potential, shaping action potentials and other electrical signals by Gating (electrophysiol ...
s *
NMDA receptor The ''N''-methyl-D-aspartate receptor (also known as the NMDA receptor or NMDAR), is a glutamate receptor and predominantly Ca2+ ion channel found in neurons. The NMDA receptor is one of three types of ionotropic glutamate receptors, the other ...
s


References


External links

* * {{channel blockers Electrophysiology Membrane biology Integral membrane proteins Voltage-gated ion channels Calcium channels